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Chapter 1
The Dot and Cross Product

The relationship between points, lines, and planes (i.e. distance between two planes) is considered trivial for
this discussion since these were already taught in H2 Mathematics.

1.1
Dot Product

Definition 1.1 (norm). Let v = (v1, . . . ,vn) ∈ Rn be a vector in the Euclidean n-space. The norm of v,
denoted by ∥v∥, refers to its length, and we write

∥v∥=
√

v2
1 + . . .+ v2

n.

Definition 1.2. Let u,v ∈ Rn. Their dot product is defined to be

u ·v = ∥u∥∥v∥cosθ where 0 ≤ θ ≤ π.

Definition 1.3 (orthogonal vectors). Two vectors u and v are orthogonal if and only if the angle
between them is 90◦, or equivalently, u ·v = 0.

Example 1.1 (MA2104 AY24/25 Sem 2 Tutorial 1). Let a,b,c be non-zero vectors. Suppose c= |a|b+ |b|a.
Prove that c bisects the angle between a and b.

Solution. Suppose the angle between a and c is θ1 and the angle between b and c is θ2. Then,

cosθ1 =
a · c
|a| |c|

=
a · (|a|b+ |b|a)

|a| |c|
=

|a|(a ·b)+ |b| |a|2

|a| |c|
=

a ·b+ |a| |b|
|c|

.

Similarly,

cosθ2 =
b · c
|b| |c|

=
b · (|a|b+ |b|a)

|b| |c|
=

|a| |b|2 + |b|(a ·b)
|b| |c|

=
a ·b+ |a| |b|

|c|
.

We see that cosθ1 = cosθ2. Note that 0 ≤ θ ≤ π and cos is injective on this interval. As such, θ1 = θ2, i.e. c
bisects the angle between a and b. □

Theorem 1.1 (triangle inequality). For vectors u,v ∈ Rn, we have the following inequality:

∥u+v∥ ≤ ∥u∥+∥v∥

and equality holds if and only if the triangle formed is degenerate, i.e. the vertices O, U , and V are
collinear.

Proof. Expand the dot product (u+v) · (u+v) and note that |cosθ | ≤ 1.
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Corollary 1.1 (reverse triangle inequality). For u,v ∈ Rn, we have

∥u−v∥ ≥ |∥u∥−∥v∥| .

Proof. Write u = (u−v)+v. Applying the triangle inequality (Theorem 1.1) yields

∥u∥ ≤ ∥u−v∥+∥v∥ so ∥u∥−∥v∥ ≤ ∥u−v∥ .

On the other hand, writing v = (v−u)+u implies ∥v∥−∥u∥ ≤ ∥v−u∥. Since ∥u−v∥ = ∥v−u∥, the result
follows.

Theorem 1.2 (Cauchy-Schwarz inequality). If u,v ∈ Rn, then

|u ·v| ≤ ∥u∥∥v∥ .

Proposition 1.1 (parallelogram law). For any vectors u,v ∈ Rn, we have

∥u+v∥2 +∥u−v∥2 = 2∥u∥2 +2∥v∥2 .

Proof. We have

∥u+v∥2 +∥u−v∥2 = (u+v) · (u+v)+(u−v) · (u−v)

= ∥u∥2 +2(u ·v)+∥v∥2 +∥u∥2 −2(u ·v)+∥v∥2

= 2∥u∥2 +2∥v∥2

Proof. Apply the definition of the dot product and recall that |cosθ | ≤ 1.

Example 1.2 (MA2104 AY24/25 Sem 2 Tutorial 1). Show that the vectors a = 2i+4j−8k, b = 3i− j+3k,
and c =−5i+11j−25k are coplanar.

Solution. It suffices to show that c is spanned by a and b, equivalently, c can be written as a linear combination
of a and b. Suppose there exist α1,α2,α3 ∈ R such that α1a+α2b+α3c = 0. Then,

α1

 2
4
−8

+α2

 3
−1
3

+α3

 −5
11
−25

=

0
0
0

 so

 2α1 +3α2 −5α3

4α1 −α2 +11α3

−8α1 +3α2 −25α3

=

0
0
0

 .
One can solve this system of linear equations to obtain α1 = 2, α2 = −3, and α3 = −1, or equivalently, c =

2a−3b. □

Example 1.3. Let a = 2i−3j+k and b = i+6j−2k. Find the scalar and vector projections of b onto a.

Solution. The scalar projection is
b ·a
|a|

=− 18√
14

and the vector projection is

(
b ·a
|a|

)
a
|a|

=−9
7

 2
−3
1

 .
□
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1.2
Cross Product and Determinant

We then introduce the cross product†.

Definition 1.4 (cross product). For two vectors u = (u1,u2,u3) and v = (v1,v2,v3), the cross product
u×v is defined to be the determinant of the following matrix:∣∣∣∣∣∣∣

i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣=
∣∣∣∣∣u2 u3

v2 v3

∣∣∣∣∣ i−
∣∣∣∣∣u1 u3

v1 v3

∣∣∣∣∣ j+
∣∣∣∣∣u1 u2

v1 v2

∣∣∣∣∣k

We then discuss some properties of the scalar triple product for vectors a,b and c.

Proposition 1.2. The following properties hold:
(i) invariance under circular shifts:

a · (b× c) = b · (c×a) = c · (a×b)

(ii) Swapping the positions of the operators without re-ordering the operands leaves the triple product
unchanged, i.e.

a · (b× c) = (a×b) · c

(iii) If any two vectors in the scalar triple product are equal, then its value is zero, i.e.

a · (a×b) = a · (b×a) = a · (b×b) = b · (a×a) = 0

Proof. The proofs of (i) and (iii) are straightforward; the proof of (ii) uses (i) and the commutativity of the dot
product.

Example 1.4 (MA2104 AY24/25 Sem 2 Tutorial 1). Find the volume of the parallelepiped determined by
the vectors a = 2i+3j−2k, b = i− j, and c = 2i+3k.

Solution. The volume, V , is given by the formula |a · (b× c)|‡ One can deduce that V = 19. □

Proposition 1.3 (distance from point to plane). Let P,Q,R,S be four points in R3 and let a = QR,
b = QS, and c = QP. Then, the distance d from the point P to the plane containing the points Q,R,S is

d =
|c · (a×b)|
|a×b|

.

Proof. Note that a unit normal vector to the plane passing through P,Q,S is given by

a×b
|a×b|

.

†Other than R3, the cross product is also and only valid in R7. This is tied to the algebraic and geometric framework of the Fano plane
and the projective plane PG(2,2), where ‘2’ in the second entry denotes the finite field of order 2.

‡Please refer to my Linear Algebra book to gain geometrical intuition for this formula.
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So, the distance d from the point P to the plane is

d = c · a×b
|a×b|

=
|c · (a×b)|
|a×b|

.

Proposition 1.4 (Lagrange’s formula). a× (b× c) = (a · c)b− (a ·b)c

Proof. Since a× (b× c) is spanned by b and c, we can express a× (b× c) as follows:

a× (b× c) = λb+µc for some λ ,µ ∈ Z.

Also, note that a is orthogonal to a× (b× c), so a · [a× (b× c)] = 0. It follows that

λ (a ·b)+µ (a · c) = 0.

For this equation to hold, we must have λ = k (a · c) and µ =−k (a ·b). By considering the first component, we
have

a2 (b1c2 −b2c1)−a3 (b3c1 −b1c3) = kb1 (a1c1 +a2c2 +a3c3)− kc1 (a1b1 +a2b2 +a3b3) .

By comparison, we have k = 1, so the result follows.

Corollary 1.2 (Jacobi’s identity). a× (b× c)+b× (c×a)+ c× (a×b) = 0
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Chapter 2
Quadric Surfaces

2.1
General Equation of a Quadric Surface

A quadric surface is the graph of a second degree equation in x, y and z. That is,

Ax2 +By2 +Cz2 +Dxy+Eyz+Fxz+Gx+Hy+ Iz+ J = 0.

Using translation and rotation, the equation can be expressed in one of the following two standard forms:

Ax2 +By2 +Cz2 + J = 0 and Ax2 +By2 + Iz = 0

We will study a total of fifteen quadric surfaces in this section. Even though it may seem like there are
many characteristics which we need to know such as the shape and critical points, it is crucial that we draw
similarities between these quadric surfaces and the four conic sections — namely the circle, ellipse, parabola,
and hyperbola. Along the way, we will provide certain techniques to remember them.

2.2
Non-Degenerate Real Quadric Surfaces

Definition 2.1 (ellipsoid). The equation of an ellipsoid (Figure 1a) is

x2

a2 +
y2

b2 +
z2

c2 = 1.

Recall that the equation in Definition 2.1 is similar to the equation of an ellipse centered at the origin with
semi-major axis a and semi-minor axis b, i.e. that is a > b.

Definition 2.2 (oblate and prolate spheroids). If we have the equation

x2

a2 +
y2

a2 +
z2

b2 = 1,

we get either an oblate or a prolate spheroid (Figures 2b and 2a respectively).

From Figures 2b and 2a, observe that the lines z = k, where k ∈ R, cut the ellipsoid, forming concentric
circles (i.e. circles sharing the same centre). This is true because each concentric circle is lying on the xy-plane
and the vector with k-component k is a normal vector to the plane.

Definition 2.3 (sphere). If we have the equation

x2 + y2 + z2 = a2,

we have a sphere, which is also known as a spherical spheroid (Figure 1b).

Definition 2.3 should be easy to remember as it as strong semblance to the equation of a circle.
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Remark 2.1 (distinction between ball and sphere). Some people might use the terms ‘ball’ and
‘sphere’ interchangeably, but this is disallowed. The distinction between a ball and a sphere lies in their
definitions and the inclusion of boundary points.

A ball in R3 refers to the set of all points within a certain distance (the radius) from a fixed
centre. This set includes what is known as the interior points. For example, in R3, a closed ball (we will
discuss closed sets formally in Definition 5.3 but this just refers to sets containing their boundary points)
of radius r centred at (a,b,c) is given by

B =

{
(x,y,z) ∈ R3 :

√
(x−a)2 +(y−b)2 +(z− c)2 ≤ r

}
.

If the ball is open, then the inequality is strict.

A sphere refers to the boundary of a ball. It has no interior and is a lower-dimensional subset of
the space it resides in. In R3, a sphere of radius r centred at (a,b,c) has equation

S =

{
(x,y,z) ∈ R3 :

√
(x−a)2 +(y−b)2 +(z− c)2 = r

}
.

So, a ball is a higher-dimensional object, i.e. 3-dimensional in R3 but a sphere is a two-dimensional
surface that forms the boundary of a ball in R3.

(a) Ellipsoid (b) Sphere
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(a) Prolate spheroid (b) Oblate spheroid

Definition 2.4 (elliptic paraboloid). The equation of an elliptic paraboloid (Figure 3a) is

x2

a2 +
y2

b2 − z = 0.

To remember Definition 2.4, make z the subject, which yields

z =
x2

a2 +
y2

b2 .

The RHS resembles that of an ellipse, which implies that any line z = k that slices the elliptic paraboloid results
in an ellipse to be obtained. As x,y ≥ 0, it implies that when x = y = 0, we obtain the minimum value of z,
which is 0. Making reference to the xy-plane, as we go higher (i.e. z-coordinate increases), the semi-major axis
and the semi-minor axis of the ellipses increase. This is a good way to remember how to sketch the elliptic
paraboloid.

Definition 2.5 (circular paraboloid). A circular paraboloid (Figure 3b) is a special case of an elliptic
paraboloid. It has the equation

x2

a2 +
y2

a2 − z = 0.

Definition 2.6 (hyperbolic paraboloid). The equation of a hyperbolic paraboloid (Figure 3c) is given
by

x2

a2 −
y2

b2 − z = 0.

A fun fact before we proceed with the properties of the hyperbolic paraboloid is that potato chips (I love
sour cream and onion flavour) have such a shape. There is a saddle point (will be discussed in due course) on
the quadric surface which allows easier stacking of chips.

We first observe that

z =
x2

a2 −
y2

b2 .
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(a) Elliptic paraboloid (b) Circular paraboloid (c) Hyperbolic paraboloid

Without a loss of generality, we set

a line on the blue arrow to be the y-axis and

a line on the red arrow to be the x-axis

where these two lines are of course orthogonal to each other and their intersection is the origin. The intersection
coincides with the saddle point. Observe that as x increases, z increases and as y increases, z increases.
Regardless of the polarity of x and y, it would not affect z since x2 and y2 will always be non-negative. From
here, observe that the loci of points traced by the red arrow and blue arrow form two hyperbolas opening in
different directions.

x
y

z

Figure 4: Analysing the saddle point (0,0,0) of the hyperbolic paraboloid z = x2 − y2

Example 2.1 (MA2104 AY24/25 Sem 2 Tutorial 2). Suppose the quadric surface S is given by z = x2 +x+
2y2 +3y and the plane Πk is given by x+ y+ z = k where k is a constant.

(a) State the type of the quadric surface S
(b) Find the vector equation for the tangent line to the curve of intersection between S and Π3 at the point

(1,0,2).
(c) Find the value of k for which the surface S is tangent to Πk. For this plane Πk, find the coordinates of the

point of tangency.
(d) Find the shortest distance from the surface S to the plane Π−10 : x+ y+ z =−10.

Solution.
(a) By completing the square, the equation of S can be written as

z =
(

x+
1
2

)2

+2
(

y+
3
4

)2

− 11
8
.
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This is an elliptic paraboloid opening along the z-axis with vertex at (−1/2,−3/4,−11/8).
(b) Suppose

f (x,y,z) = x2 + x+2y2 +3y− z and g(x,y,z) = x+ y+ z− k.

Then,

∇ f = ⟨2x+1,4y+3,−1⟩ and ∇g = ⟨1,1,1⟩ .

At (1,0,2), we have ∇ f = ⟨3,3,−1⟩. So, the vector tangent to the curve of intersection C of S and Π3 is
n = ∇ f ×∇g = 4⟨1,−1,0⟩. As such, the required vector equation is

r(t) =

1
0
2

+ t

 1
−1
0

 where t ∈ R.

(c) Note that a normal vector to the surface S is parallel to the normal vector to Πk. As such, we have

⟨2x+1,4y+3,−1⟩= λ ⟨1,1,1⟩ .

As such, we have 2x+1 = λ , 4y+3 = λ and −1 = λ , which implies x =−1 and y =−1. The point of
tangency is (−1,−1,−1). Substituting into x+ y+ z = k yields k =−3.

(d) Note that Π−3 is tangent to S at (−1,−1,−1). Since Π−10 is parallel to Π−3, then by Proposition 1.3, the
shortest distance from S to Π−10 is

d =
−3+10√

12 +12 +12
=

7√
3
.

Definition 2.7 (hyperboloid of one sheet). The equation of a hyperboloid of one sheet or a hyperbolic
hyperboloid (Figure 5a) is

x2

a2 +
y2

b2 −
z2

c2 = 1.

Rearranging the equation in Definition 2.7, we have

x2

a2 +
y2

b2 =
z2

c2 +1.

When z = 0, we obtain an ellipse on the xy-plane centered at the origin with semi-major axis a and semi-minor
axis b (assuming that a > b). As z increases, then the semi-major and semi-minor axes increase as well, and
as such, we obtain bigger ellipses. The same argument can be applied to the case where z decreases for z < 0
because z2 will increase too.

Definition 2.8 (hyperboloid of two sheets). The equation of a hyperboloid of two sheets or an elliptic
hyperboloid (Figure 5b) is

x2

a2 +
y2

b2 −
z2

c2 =−1.

Rearranging,
x2

a2 +
y2

b2 =
z2

c2 −1.
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Note that
x2

a2 +
y2

b2 ≥ 0 implies z2 ≥ c2 implies z ≤−c or z ≥ c.

Hence, we cannot sketch the quadric surface for −c < z < c. In a similar fashion to hyperboloids of one sheet,
if we set the left side of the equation to be a constant k, then we obtain the equation of the ellipse, which
semi-major and semi-minor axis increase for larger values of k. Note that k is affected by z2 so as z2 increases,
k increases too.
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(a) Hyperboloid of one sheet (b) Hyperboloid of two sheets

2.3
Degenerate Real Quadric Surfaces

Definition 2.9 (elliptic and circular cones). The equation of an elliptic cone (Figure 6a) is

x2

a2 +
y2

b2 −
z2

c2 = 0.

A circular cone with equation
x2

a2 +
y2

a2 −
z2

b2 = 0

can be obtained from the above.

A good way to remember Definition 2.9 is by noting that the equation of an elliptic cone resembles that of
an elliptic paraboloid.

(a) Elliptic cone (b) Circular cone

Definition 2.10 (elliptic, circular, hyperbolic and parabolic cylinder). The equation of an elliptic
cylinder (Figure 7a) is

x2

a2 +
y2

b2 = 1,
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and that of a circular cylinder (Figure 7b) is

x2 + y2 = a2.

The equation of a hyperbolic cylinder (Figure 7c) is

x2

a2 −
y2

b2 = 1.

A parabolic cylinder (Figure 7d) is given by the equation

x2 +2ay = 0.

(a) Elliptic cylinder (b) Circular cylinder (c) Hyperbolic cylinder (d) Parabolic cylinder

Note that the first two equations equations in Definition 2.10 resemble the ellipse and circle respectively,
just that now we are dealing in three-dimensional space.
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Chapter 3
Cylindrical and Spherical Coordinates

3.1
Polar Coordinates

Definition 3.1 (polar coordinates). The polar coordinates are given by (r,θ), where r is known as the
radius vector and θ is known as the vectorial angle (Figure 8). The conversion formulae are

x = r cosθ and y = r sinθ so equivalently x2 + y2 = r2 and tanθ =
y
x

provided that x ̸= 0.

x

y

r

rθ

θ

Figure 8: Geometric interpretation of polar coordinates

Using a change of variables to polar coordinates, certain limits can be solved.

Example 3.1. We wish to compute the following limit by using polar coordinates:

lim
(x,y)→(0,0)

x3 + y3

x2 + y2

Solution. Note that if we use Cartesian coordinates, we cannot obtain a solution since both the numerator and
denominator tend to zero. Using polar coordinates, as x,y → 0, then r,θ → 0. Hence,

lim
(x,y)→(0,0)

x3 + y3

x2 + y2 = lim
(r,θ)→(0,0)

r3 cos3 θ + r3 sin3
θ

r2 cos2 θ + r2 sin2
θ

= lim
(r,θ)→(0,0)

(r cos3
θ + r sin3

θ)

= 0

□
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3.2
Cylindrical Coordinates

Definition 3.2 (cylindrical coordinates). Suppose we want to convert Cartesian coordinates (x,y,z) to
cylindrical coordinates (r,θ ,z). For the x- and y- components, they are similar to polar coordinates. Thus,
we have

x = r cosθ , y = r sinθ and z = z.

Example 3.2 (MA2104 AY24/25 Sem 2 Tutorial 6). For each of the following equations, rewrite it in
cylindrical coordinates.

(a) x2 + y2 + z2 = 16
(b) x+2y+3z = 6
(c) x2 − y2 −2z2 = 4

Solution.

(a) Let x = r cosθ , y = r sinθ , and z = z so r2 + z2 = 16.
(b) Similarly, we have r cosθ +2r sinθ +3z = 6.
(c) We have

(r cosθ)2 − (r sinθ)2 −2z2 = 4,

which simplifies to r2 cos2θ −2z2 = 4.

3.3
Spherical Coordinates

For spherical coordinates, it is slightly more complicated. Please refer to Figure 9 for the geometric
interpretation of spherical coordinates. This time, we will convert from (x,y,z) to (ρ,θ ,φ), where in a similar
fashion, ρ is the radius and θ is the vectorial angle/inclination. The angle φ is known as the azimuthal angle,
commonly considered the angle between the coordinate P(x,y,z) and the z-axis.

Definition 3.3 (spherical coordinates). The conversion formulae state that

x = ρ sinφ cosθ y = ρ sinφ sinθ z = ρ cosφ ,

where ρ ≥ 0, 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π .

Proposition 3.1. Observe that three equations in Definition 3.3 satisfy the identity ρ2 = x2 + y2 + z2.

How I like to remember the formula in Proposition 3.1 (but understand its derivation first — it is a fairly
simple one) is to observe that x and y both contain the ρ cosθ and ρ sinθ components respectively, which
resemble polar coordinates. Next, both x and y contain the term sinφ , which also appears in the calculation of
its Jacobian determinant. If x and y contain sinφ , then z must contain cosφ !

Just to jump the gun, the Jacobian determinant for spherical coordinates, det(J), is given by det(J) = ρ2 sinφ .
This idea will be formally introduced in Proposition 6.11.
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x

y

z

r

θ

φr

x
y

z

θ

φ

Figure 9: Geometric interpretation of spherical coordinates

Example 3.3 (MA2104 AY24/25 Sem 2 Tutorial 6). For each of the following equations, rewrite it in
spherical coordinates.

(a) x2 + y2 + z2 = 16
(b) x+2y+3z = 6
(c) x2 − y2 −2z2 = 4

Solution.

(a) From Proposition 3.1, we have ρ2 = 16, which simplifies to ρ = 4. Geometrically, this makes sense —
this means that for any point (x,y,z) on the surface, its distance with the origin is constant (which is 4).
The only figure in R3 possessing this property is the sphere†.

(b) Substituting x = ρ cosθ sinφ , y = ρ sinθ sinφ , and z = ρ cosφ yields

ρ (cosθ sinφ +2sinθ sinφ +3cosφ) = 6.

(c) Similarly, we have

ρ
2 (cos2

θ sin2
φ − sin2

θ sin2
φ −2cos2

φ
)
= 4

which simplifies to ρ2
(
cos2θ sin2

φ −2cos2 φ
)
= 4.

Some limits can be solved by using a change of variables to spherical coordinates.

Example 3.4. Suppose we wish to find the following limit:

lim
(x,y,z)→(0,0,0)

xyz
x2 + y2 + z2 .

†One should recall Remark 2.1 on the distinction between a ball and a sphere
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Solution. As x,y,z → 0, then it is clear that ρ,θ ,φ → 0 too.

lim
(x,y,z)→(0,0,0)

xyz
x2 + y2 + z2 = lim

(ρ,θ ,φ)→(0,0,0)

ρ sinφ cosθ ·ρ sinφ sinθ ·ρ cosφ

(ρ sinφ cosθ)2 +(ρ sinφ sinθ)2 +(ρ cosφ)2

= lim
(ρ,θ ,φ)→(0,0,0)

ρ3 cosφsin2
φ cosθ sinθ

ρ2

= lim
(ρ,θ ,φ)→(0,0,0)

ρ cosφsin2
φ cosθ sinθ

= 0

□
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Chapter 4
Functions of Several Variables

4.1
Vector Functions

Definition 4.1 (vector function). A vector function r(t) is a function whose domain is a set of real
numbers and whose range is a set of vectors. It can be written as

r(t) = ⟨ f (t) ,g(t) ,h(t)⟩ .

Proposition 4.1. As t tends to a, then the limit of r(t) is defined by

lim
t→a

r(t) =
〈

lim
t→a

f (t) , lim
t→a

g(t) , lim
t→a

h(t)
〉
.

Standard properties like linearity and scalar multiplicativity are considered trivial in this context. One
important property in relation to the cross product is

d
dt

(u(t)×v(t)) = u(t)v′ (t)+u′ (t)v(t)

whose proof is rather rigorous. Note that this formula is analogous to the product rule.

Definition 4.2 (derivative of vector function). For a vector function r(t), the derivative is

dr
dt

= r′ (t) = lim
h→0

r(t +h)− r(t)
h

which is a consequence of first principles.

Definition 4.3 (function of two variables). A function f of 2 variables is a rule that assigns to each
ordered pair of real numbers (x,y) in a set D a unique real number denoted by f (x,y). Here, D is the
domain of f . The set of values that f takes on is the range of f . That is,

R f = { f (x,y) : (x,y) ∈ D} .

The graph Γ of f is the set of all points (x,y,z) ∈ R3 such that z = f (x,y).

Definition 4.4 (function of n variables). Let

f : D ⊆ Rn → R where f : (x1, . . . ,xn) 7→ K ∈ R be a function of n variables.

We can describe f by examining its level surfaces (see Definition 4.5).

In Definition 4.4, we introduced what is called a function of n variables and mentioned that the function
f can be described by examining its level surfaces. This is the more general case of what is known as a level
curve (Definition 4.5).
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Definition 4.5 (level curve). The level curves of a function of 2 variables are

the curves in the xy-plane with equation f (x,y) = K where K ∈ R.

4.2
Limits and Continuity

Definition 4.6 (ε-δ definition of a limit). Let f be a function of two variables whose domain D
includes points arbitrarily close to (a,b). We say that the limit of f (x,y) as (x,y) approaches (a,b) is L
and we write

lim
(x,y)→(a,b)

f (x,y) = L

if for any ε > 0, there exists δ > 0 such that

(x,y) ∈ D and 0 <

√
(x−a)2 +(y−b)2 < δ implies | f (x,y)−L|< ε.

Remark 4.1. Definition 4.6 can also be applied to a function that is defined parametrically, i.e. f (x,y) =
f (g(t),h(t)).

If the limit L exists, then
(i) its value is unique and

(ii) L is independent of the choice of any path approaching (a,b)
The latter is related to a test (two path test) to determine if a limit exists.

To prove that the limit exists, we have to use the formal ε-δ definition. A common trick to simplify the
inequality in a particular step would be to use the triangle inequality. On the other hand, to prove that the
limit does not exist, we need to obtain a contradiction. This is where the two path test comes in handy. For
example, the function might have two different values when approaching along the line y = x and the curve
y = x2. This technique, though requires some intuition, is useful.

Definition 4.7 (continuity). A function f of 2 variables is said to be continuous at (a,b) if

lim
(x,y)→(a,b)

f (x,y) = f (a,b).

f is continuous on D ∈ R2 if f is continuous at each point (a,b) in D.

Sidetrack to Real Analysis, the term smoothness is commonly associated with differentiability and
continuity. Consider an open set (see Definition 7.9) on R and a function f defined on that set with real values.
Let k ∈ N. f is of class Ck if the derivatives f ′, f ′′, . . . , f (k) exist and are continuous. f is

infinitely differentiable, smooth or of class C∞ if it has derivatives of all orders.

f is said to be of class Cω , or analytic, if f is smooth and if its Taylor series expansion around any point in its
domain converges to the function in some neighbourhood of the point. Cω is thus strictly contained in C∞.

Simply said, C0 is the class of functions for which f is continuous, C1 is the class of functions for which f
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and f ′ are continuous, C2 is the class of functions for which f , f ′ and f ′′ are continuous and so on.

We shall address a common misconception in MA2002 on continuity and differentiability with the help of
Figure 10. In Chinese, ‘可导函数’ refers to a differentiable function, whereas ‘连续函数’ refers to a continuous
function. The foreground mentions ‘可倒一定连续’ and the background mentions ‘连续不一定可倒’, which
translate to ‘falling implies continuous’ and ‘continuous does not imply that the bicycles would fall’. For those
who understand Chinese, this is precisely an example of a pun using homonyms because ‘可导’ and ‘可倒’ are
pronounced the same but mean different things — ‘可导’ means differentiable whereas ‘可倒’ means able to
fall!

Essentially, what Figure 8 is trying to address is that

differentiability implies continuity but the converse is not true in general.

One would know from MA2002 that |x| is continuous on R but not differentiable at x = 0.

Figure 10: Bicycle meme

4.3
Partial Derivatives

Definition 4.8 (partial derivative). Let f be a function of 2 variables, namely x and y. The partial
derivative of f with respect to x is denoted by ∂ f/∂x or fx and that with respect to y is denoted by
∂ f/∂y or fy. Using first principles, we have

∂ f (a,b)
∂x

= lim
h→0

f (a+h,b)− f (a,b)
h

and
∂ f (a,b)

∂y
= lim

h→0

f (a,b+h)− f (a,b)
h

.

In Definition 4.8, take fx for instance. This means that we differentiate f with respect to x, while treating
everything else as a constant. This is unlike the conventional differentiation problems that we have been exposed
to in secondary school and junior college where we treat other letters like y, u, and v as variables. However,
what is the geometric interpretation? It turns out that fx(a,b) measures the rate of change of f in the direction
of i at the point (a,b).

We can also find expressions for higher order derivatives like ∂ 3 f/∂x3. The following list shows how we
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can express them:

fxx =
∂ 2 f
∂x2

fxy =
∂

∂y

(
∂ f
∂x

)
=

∂ 2 f
∂y∂x

fyx =
∂

∂x

(
∂ f
∂y

)
=

∂ 2 f
∂x∂y

Some of us would have had exposure to ordinary differential equations (ODEs) in junior college. Here, partial
derivatives have their own type of differential equations too, known as partial differential equations (PDEs)†.
This imposes relations between the various partial derivatives of a multivariable function.

Example 4.1 (heat equation). The heat equation is an example of a partial differential equation. We have

ut = κuxx where κ > 0 is the thermal conductivity of the material.

It is known that the fundamental solution is

u(x, t) =
1√

4πkt
exp
(
− x2

4kt

)
.

Figure 11 provides a 3D surface plot of the solution u(x, t) of the heat equation, where x is the horizontal axis,
t is the axis going into the page (this denotes time), and u(x, t) which denotes the temperature is the vertical
axis. We see that as t increases, the solution u(x, t) spreads out and becomes flatter, illustrating the diffusion of
heat over time‡.
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Figure 11: A graphical solution to the heat equation ut = uxx

†Take MA4221 Partial Differential Equations if you are interested in this topic. I strongly recommend the textbooks by Walter Strauss
and Lawrence Evans.

‡I believe any person would find this fact on the diffusion of heat quite obvious.
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Theorem 4.1 (Clairaut’s theorem). Let f be defined on an open disk containing the point (a,b). If fxy

and fyx are continuous at (a,b), then
fxy(a,b) = fyx(a,b).

It is also known as the symmetric property of the second derivatives.

We provide a proof of Clairaut’s theorem using the mean value theorem. It can also be proven using iterated
integrals which involves Fubini’s theorem (will be discussed in one of the upcoming sections).

Proof. Assume that fxy and fyx are defined on a small open disk D centered at (a,b). Let (x,y) be a point in D.
Fix x and consider the function

[ f (x,y)− f (a,y)]− [ f (x,b)− f (a,b)]

in y. Applying the mean value theorem with respect to y yields

[ f (x,y)− f (a,y)]− [ f (x,b)− f (a,b)] = [ fy(x,ζ1)− fy(a,ζ2)] (y−b)

for some ζ1 between y and b. Applying the mean value theorem to fy(x,ζ1) with respect to x,

[ f (x,y)− f (a,y)]− [ f (x,b)− f (a,b)] = fyx(ζ2,ζ1)(x−a)(y−b)

for some ζ2 between x and a. Note that

[ f (x,y)− f (a,y)]− [ f (x,b)− f (a,b)] = [ f (x,y)− f (x,b)]− [ f (a,y)− f (a,b).]

Applying the mean value theorem first with respect to x, then with respect to y, we have

[ f (x,y)− f (a,y)]− [ f (x,b)− f (a,b)] = [ f (x,y)− f (x,b)]− [ f (a,y)− f (a,b)]

= fxy(ζ3,ζ4)(y−b)(x−a)

where ζ3 is between x and a, and ζ4 is between y and b. Thus,

fxy(ζ2,ζ1) = fyx(ζ3,ζ4).

Since fxy and fyx are continuous on (a,b), by taking the limit as (x,y) tends to (a,b), we obtain Clairaut’s
theorem.

Example 4.2 (wave equation; MA2104 AY24/25 Sem 2 Tutorial 2 Question 12). Suppose f and g are twice
differentiable functions of one variable. Let u be the function of x and t defined by

u(x, t) = f (x+at)+g(x−at) where a is a constant.

Show that
∂ 2u
∂ t2 = a2 ∂ 2u

∂x2 .

This partial differential equation is known as the wave equation. The solution u(x, t) has a generalisation
(interested students can look up d’Alembert’s formula).
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Solution. We have

∂u
∂ t

= a f ′ (x+at)−ag′ (x−at)

∂ 2u
∂ t2 = a2 f ′′ (x+at)+a2g′′ (x−at)

= a2 [ f ′′ (x+at)+g′′ (x−at)
]

and

∂u
∂x

= f ′ (x+at)+g′ (x−at)

∂ 2u
∂x2 = f ′′ (x+at)+g′′ (x−at)

As such, the result follows. □

4.4
Tangent Plane

Proposition 4.2 (tangent plane). Let f be a function of two variables. The graph of f is a surface in
R3 with equation z = f (x,y). Let P(x0,y0,z0) be a point on this surface. Thus, z0 = f (x0,y0). Assuming
a tangent plane to the surface exists, its equation is given by

z = z0 + fx (x0,y0)(x− x0)+ fy (x0,y0)(y− y0) .

Proof. Any plane passing through P(x0,y0,z0) has the following equation:

A(x− x0)+B(y− y0)+C(z− z0) = 0

Assume that the plane is not vertical, i.e. C ̸= 0. Then, the equation of the plane is

z− z0 = a(x− x0)+b(y− y0).

The tangent line to C1 at P in the x-direction has a gradient of a, which by the geometric interpretation of the
partial derivative, can be represented by a = fx(x0,y0). Similarly, b = fy(x0,y0). Substituting a and b into the
equation of the plane yields the result.

Note that the tangent plane to the surface z = f (x,y) at P(x,y,z) is very close to the surface at least when
it is near P. Hence, we may use the function defining the tangent plane as a linear approximation to f. At the
point (x,y) = (a,b), note that P has coordinates (a,b, f (a,b)).

Definition 4.9 (linear approximation). The linear function L whose graph is this tangent plane is given
by

L(x,y) = f (a,b)+ fx (a,b)(x−a)+ fy (a,b)(y−b)

where L is known as the linearisation of f at (a,b). Therefore, the approximation

f (x,y)≈ L(x,y) = f (a,b)+ fx (a,b)(x−a)+ fy (a,b)(y−b)

is called the linear approximation of f at (a,b).
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The term differential refers to an infinitesimal change in some varying quantity. In single variable Calculus,
we know that if y is a function of x, then the differential of y, known as dy, is related to dx by the following
formula:

dy =
dy
dx

dx

Since we are now dealing with partial derivatives, we have a similar formula for the differential, dz, where
z = f (x,y).

Definition 4.10 (differential). The differential dz is defined to be

dz = fx (x,y)dx+ fy (x,y)dy.

The actual change ∆z of z satisfies the equation ∆z ≈ dz as a consequence of the tangent plane
approximation.

Definition 4.11 (differentiability). f is said to be differentiable at (a,b) if

∆z = fx (a,b)∆x+ fy (a,b)∆y+ ε1∆x+ ε2∆y

where
lim

(∆x,∆y)→(0,0)
ε1 = 0 and lim

(∆x,∆y)→(0,0)
ε2 = 0.

If fx(x,y) and fy(x,y) exist in an open disk containing (a,b) and are continuous at (a,b), then f is
differentiable at (a,b).

Example 4.3 (MA2108 AY24/25 Sem 2 Tutorial 2 Question 13). Let f (x,y) be defined as

f (x,y) =


xy2

x2 + y2 , if (x,y) ̸= (0,0),

0, if (x,y) = (0,0).

(a) Determine if f is continuous at (0,0).
(b) Find fx(0,0) and fy(0,0).
(c) Show that f is not differentiable at (0,0).

Solution.
(a) We shall use polar coordinates. Letting x = r cosθ and y = r sinθ , consider the limit

lim
(r,θ)→(0,0)

(r cosθ)(r sinθ)2

r2 = lim
(r,θ)→(0,0)

r sin2
θ cosθ = 0

so f is continuous at (0,0).
(b) Recall Definition 4.8, so

fx (0,0) = lim
h→0

f (h,0)− f (0,0)
h

= lim
h→0

0−0
h

= 0 and

fy (0,0) = lim
h→0

f (0,h)− f (0,0)
h

= lim
h→0

0−0
h

= 0

(c) By modifying Definition 4.11, we say that f is differentiable at (0,0) if we can write

f (x,y) = f (0,0)+ fx (0,0)∆x+ fy (0,0)∆y+R(∆x,∆y) where lim
(∆x,∆y)→(0,0)

R(∆x,∆y)√
(∆x)2 +(∆y)2

= 0.
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Substituting the known values obtained in (a) and (b), we have

R(∆x,∆y) = f (∆x,∆y) =
(∆x)(∆y)2

(∆x)2 +(∆y)2

so

lim
(∆x,∆y)→(0,0)

R(∆x,∆y)√
(∆x)2 +(∆y)2

= lim
(∆x,∆y)→(0,0)

(∆x)(∆y)2(
(∆x)2 +(∆y)2

)3/2 .

One path that we can take is (∆x,∆y) = (t, t) so we have

lim
(t,t)→(0,0)

t · t2

(t2 + t2)3/2 =
1√
2
̸= 0.

Hence, f is not differentiable at (0,0).

4.5
Chain Rule

Proposition 4.3 (chain rule). Suppose z = f (x,y) is a differentiable function of x and y, where x = g(t)
and y = h(t) are differentiable functions of t. Then z is a differentiable function of t and

dz
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

.

Example 4.4 (MA2104 AY24/25 Sem 2 Tutorial 3). Let f (x,y) =
√

20− x2 −7y2. Find the linear
approximation of f at (2,1). Use it to approximate the value of f (1.95,1.08).

Solution. We have

fx (x,y) =− x√
20− x2 −7y2

and fy (x,y) =− 7y√
20− x2 −7y2

.

Substituting x = 2 and y = 1 yields fx (2,1) =−2/3 and fy (2,1) =−7/3. By Definition 4.9, we have

L(x,y) = f (2,1)+ fx (2,1)(x−2)+ fy (2,1)(y−1)

= 3− 2
3
(x−2)− 7

3
(y−1)

=
1
3
(−2x−7y+20)

Substituting x = 1.92 and y = 1.08, we obtain f (1.92,1.08)≈ L(1.92,1.08) = 2.85. □

Example 4.5 (MA2104 AY24/25 Sem 2 Tutorial 3). Let z = exy tany, x = s+2t, and y = s/t. Use the chain
rule to find ∂ z/∂ s and ∂ z/∂ t.

Solution. By the chain rule, we have

∂ z
∂ s

=
∂ z
∂x

dx
ds

+
∂ z
∂y

dy
ds

= yexy tany ·1+
(
xexy tany+ sec2 yexy)(1

t

)
= exy

(
y tany+

x tany+ sec2 y
t

)
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and

∂ z
∂ t

=
∂ z
∂x

dx
dt

+
∂ z
∂y

dy
dt

= 2yexy · tany+
(
xexy tany+ sec2 yexy)(− s

t2

)
= exy

(
2y tany− sx tany+ ssec2 y

t2

)
□

Example 4.6 (MA2104 AY24/25 Sem 2 Tutorial 3). Let z = f (x,y), where x = g(t) and y = h(t). Suppose
g(3) = 2, g′ (3) = 5, h(3) = 7, h′ (3) =−4, fx (2,7) = 6, and fy (2,7) =−8. Find the value of dz/dt at t = 3.

Solution. We have

dz
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

= fx (2,7)g′ (3)+ fy (2,7)h′ (t) .

So at t = 3, dz/dt = 6 ·5+(−8)(−4) = 62. □

Example 4.7 (MA2104 AY24/25 Sem 2 Tutorial 3). The temperature of a point (x,y) on a plane T (x,y)
is measured in degrees Celsius. A bug crawls so that its position after t seconds is given by x =

√
1+ t and

y = 2+ t/3, where x and y are measured in centimetres. The temperature function satisfies Tx (2,3) = 4 and
Ty (2,3) = 3. How fast is the temperature (experienced by the bug) rising on the bug’s path after 3 seconds?

Solution. We have

dx
dt

=
1

2
√

1+ t
and

dy
dt

=
1
3
.

As such,

∂T
∂ t

=
∂T
∂x

dx
dt

+
∂T
∂y

dy
dt

=
∂T
∂x

1
2
√

1+ t
+

∂T
∂y

· 1
3
.

Substituting the known values, at t = 3, ∂T/∂ t = 4 ·1/4+3 ·1/3 = 2. □

Proposition 4.4 (implicit differentiation). Suppose F(x,y) = 0 defines y implicitly as a function of x.
That is y = f (x). Then F(x, f (x)) = 0. We have the following result:

dy
dx

=−Fx

Fy

Proof. Using the chain rule to differentiate F with respect to x.

Example 4.8 (MA2104 AY24/25 Sem 2 Tutorial 3). Suppose xyz = cos(x+ y+ z). Use implicit differenti-
ation to find

∂ z
∂x

and
∂ z
∂y

.

Solution. We first take the partial derivative of x on both sides. So,

∂

∂x
(xyz) =

∂

∂x
cos(x+ y+ z)

yz+ xy
∂ z
∂x

=−sin(x+ y+ z)
(

1+
∂ z
∂x

)
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To see why the LHS of the second line holds, we use the product rule to obtain

∂

∂x
(xyz) = x

∂

∂x
(yz)+ yz

∂x
∂x

= x
(

z
∂y
∂x

+ y
∂ z
∂x

)
+ yz = yz+ xy

∂ z
∂x

so the statement is justified. Rearranging the equation yields

∂ z
∂x

=− sin(x+ y+ z)+ yz
xy+ sin(x+ y+ z)

.

In a similar fashion, one can deduce that

∂ z
∂y

=− sin(x+ y+ z)+ xz
xy+ sin(x+ y+ z)

.

□

4.6
Directional Derivatives and Gradient Vector

Definition 4.12 (directional derivative). Let f be a function of x and y. The directional derivative of f
at (x0,y0) in the direction of a unit vector u = ⟨a,b⟩ is

Du f (x0,y0) = lim
h→0

f (x0 +ha,y0 +hb)− f (x0,y0)

h
provided that the limit exist.

There are times when we are interested in computing the directional derivative of a function.

Proposition 4.5. Suppose f is a function in terms of x and y. Then, f has a directional derivative in the
direction of any unit vector u = ⟨a,b⟩ and

Du f (x,y) = ⟨ fx (x,y) , fy (x,y)⟩ ·u.

Example 4.9 (MA2104 AY24/25 Sem 2 Tutorial 3). The temperature function T (x,y) is defined on R2 by
T (x,y) = xsin2y, where T is measured in degree Celsius and x,y are measured in centimetres. An insect is
moving clockwise around the circle of radius 1 cm centred at the origin at a speed of 2 cm/s. How fast is the
temperature (experienced by the insect) changing in degree Celsius per second at the point

(
1/2,

√
3/2
)
?

Solution. We first determine the unit velocity vector u. In Mathematics, the conventional direction is anti-
clockwise. When we parametrise the unit circle, we can use the substitutions x = cos t and y = sin t. As the
unit velocity vector u is orthogonal to the radius vector, we can choose u = ⟨sin t,−cos t⟩ (since the insect is
travelling clockwise).

Suppose the insect is at (cos t,sin t) at time t. Then, at the point
(
1/2,

√
3/2
)
, we have cos t = 1/2 and

sin t =
√

3/2. So, u =
〈√

3/2,−1/2
〉
. Since the insect is travelling at 2 cm/s, we have v = 2u =

〈√
3,−1

〉
.

Hence, the rate of change of temperature is

DvT =

[
sin2y

2xcos2y

]
·

[√
3

−1

]
=

[
sin

√
3

cos
√

3

]
·

[√
3

−1

]
=
√

3sin
√

3− cos
√

3 ≈ 1.87 ◦/s.

□
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Definition 4.13 (gradient vector). The gradient of a scalar-valued differentiable function f of several
variables is the vector field ∇ f whose value at a point P is the vector whose components are the partial
derivatives of f at P. As such, it can be written as follows:

∇ f (x,y) =
∂ f
∂x

i+
∂ f
∂y

j

When we were talking about directional derivatives, observe that

⟨ fx (x,y) , fy (x,y)⟩= ∇ f (x,y) =
∂ f
∂x

i+
∂ f
∂y

j,

which implies that the gradient vector has an alternative (and useful) formula. That is,

Du f = ∇ f ·u.

Suppose P ∈ D f . Then, note that

∇ f (P) ·u = ∥∇ f (P)∥∥u∥cosθ = ∥∇ f (P)∥cosθ

where the second equality uses the fact that u is a unit vector. This equation implies that the maximum value of
Du f (P) is |∇ f (P)| and this occurs when u is acting in the same direction as the gradient vector ∇ f (P). ∇ f (P)
can also be regarded as the direction and rate of fastest increase.

Here is a summary.

Proposition 4.6 (geometric properties of ∇ f ). Suppose f is a differentiable function at the point (a,b)
such that ∇ f (a,b) ̸= 0. Then, the following hold:

(i) The direction of ∇ f (a,b) is perpendicular to the contour of f through (a,b) and it is in the direction
of the maximum rate of increase of f

(ii) ∥∇ f∥ is the maximum rate of change of f at that point and is large when the contours are close
together and small when they are far apart
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Chapter 5
Maxima and Minima

5.1
Maxima, Minima and Saddle Points

Definition 5.1 (local maximum and minimum). f (x,y) has a local maximum at (a,b) if f (x,y) ≤
f (a,b) for all points (x,y) in some disk with centre (a,b). The value f (a,b) is called a local maximum
value. Similarly, if f (x,y) ≥ f (a,b) for all points (x,y) in some disk with centre (a,b), then f (a,b) is a
local minimum value.

Proposition 5.1. If f has a local maximum or a local minimum at (a,b) and fx(a,b) and fy(a,b) exist,
then fx(a,b) = 0 and fy(a,b) = 0, i.e. ∇ f (a,b) = 0. (a,b) is a critical point of f if fx(a,b) = fy(a,b) = 0,
or if one of these partial derivatives does not exist.

Definition 5.2 (saddle point). A function f is said to have a saddle point at (a,b) if there is a disk
centred at (a,b) such that f assumes its maximum value on one diameter of the disk only at (a,b) and
assumes its minimum value on another diameter of the disk only at (a,b).

To better understand Definition 5.2, at the saddle point, the derivatives in orthogonal directions are zero but
the point is not regarded as a local extremum of the function.

Example 5.1. Refer to Figure 12 (or recall Figure 4) which shows the graph of z = x2 − y2. It is a hyperbolic
paraboloid that passes through the origin. However, this point is not a local extremum so it is a saddle point.
This is because along the path z = x2, we observe that the origin seems like a minimum point. However, along
the path z =−y2, the origin seems like a maximum point.

Figure 12: Graph of z = x2 − y2, which contains a saddle point
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5.2
Second Derivative Test

Proposition 5.2 (second derivative test). Suppose the partial derivatives fxx, fxy, fyx and fyy are
continuous on a disk with centre (a,b) and suppose fx(a,b) = fy(a,b) = 0. Let D (which is actually
called the determinant) be defined as follows:

D(a,b) = fxx(a,b) fyy(a,b)− ( fxy(a,b))
2

(1). D > 0 and fxx(a,b)> 0, then f has a local minimum at (a,b)
(2). D > 0 and fxx(a,b)< 0, then f has a local maximum at (a,b)
(3). D < 0, then f has a saddle point at (a,b)
(4). D = 0, then no conclusion can be drawn

To readers who are interested and have background knowledge on Linear Algebra, the Hessian matrix,
denoted by H is of interest in this section. If the second partial derivatives of f exist and are continuous in its
domain, then the Hessian Matrix of f is the following 2×2 (for simplicity sake) matrix:

H =

[
fxx (a,b) fxy (a,b)
fyx (a,b) fyy (a,b)

]

Observe that det(H) = fxx(a,b) fyy(a,b)− ( fxy(a,b))
2, which is the same as what was stated previously in

Proposition 5.2!

Example 5.2 (MA2104 AY24/25 Sem 2 Tutorial 4). Suppose f (x,y) and its first and second partial
derivatives are continuous throughout a disc centred at (a,b). If (a,b) is a critical point of f and fxx (a,b)
and fyy (a,b) differ in sign, can you infer anything about f (a,b)? Give reasons for your answer.

Solution. Without loss of generality, suppose fxx (a,b)< 0 and fyy (a,b)> 0. By the second derivative test, we
have

D(a,b) = fxx (a,b) fyy (a,b)− ( fxy (a,b))
2 < 0

so we conclude that (a,b) is a saddle point. □

5.3
Some Analysis

Definition 5.3 (bounded sets and closed sets). A bounded set in R2 is one that is contained in some
disk. A closed set in R2 is one that contains all its boundary points.

Example 5.3. Figure 13 shows some bounded and closed sets.

Figure 13: Bounded and closed sets
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Example 5.4. Figure 14 shows some non-examples. In particular, the left set is unbounded, whereas the
middle and right sets are not closed.

Figure 14: The left set is unbounded, whereas the middle and right sets are not closed

Theorem 5.1 (extreme value theorem). If f is continuous on a closed, bounded set D in R2, then f
attains an absolute maximum value f (x1,y1) and an absolute minimum value f (x2,y2) at some points
(x1,y1) and (x2,y2) in D.

To find the absolute maximum/absolute minimum of a function defined on a closed and bounded set, firstly,
we have to find the values of f at the critical points. That is, to find the coordinates (x,y) such that fx(x,y) =
fy(x,y) = 0. We then find the extreme values of f on the boundary of D. Lastly, the largest of the values obtained
from the earlier process yields the absolute maximum and vice versa.

5.4
Method of Lagrange Multipliers

The method of Lagrange multipliers involves maximising or minimising a function subject to a constraint.
For example, the function could be f (x,y) and the constraint could be g(x,y) = 0.

Figure 15 shows the level curves of f (x,y) = α , where 8 ≤ α ≤ 12 and the constraint g(x,y) = 0. Suppose
the extreme value of f (x,y) subjected to the constraint is k and it is attained at the point (x0,y0). Firstly, the
curve g must touch the level curve at f (x,y) = k so as to allow one to move the point along g(x,y) = 0 in order
to increase/decrease the value of f .

Figure 15: Geometric interpretation of the Lagrange multiplier
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As such, observe that the gradients of f and g are parallel at (x0,y0).

Theorem 5.2 (method of Lagrange multipliers). If f attains an extreme value at (x0,y0),

∇ f (x0,y0) = λ∇g(x0,y0) if ∇g(x0,y0) ̸= 0

The method of Lagrange multipliers works for 2 constraints and 3 variables too! For such a case, suppose
we want to maximise/minimise f (x,y,z) subjected to the constraints g(x,y,z) = h(x,y,z) = 0.

Theorem 5.3 (method of Lagrange multipliers). If f attains an extreme value at (x0,y0,z0),

∇ f (x0,y0,z0) = λ∇g(x0,y0,z0)+µ∇h(x0,y0,z0) if ∇g(x0,y0,z0) ̸= 0 and ∇h(x0,y0,z0) ̸= 0.

To those who have substantial Olympiad experience, you would be familiar with some classical inequalities
like Cauchy-Schwarz and AM-GM. Most extremum problems can be solved using these inequalities. However,
there are some which cannot be solved using these methods. This is where the method of Lagrange multipliers
comes in handy.

Example 5.5. Suppose x,y,z ≥ 0 and they satisfy the equation

1
x
+

1
y
+

1
z
= 1.

We wish to solve for x,y and z which can minimise

f (x,y,z) = x+ y+ z2

and also, solve for the minimum of f (x,y,z).

Solution. We let f (x,y,z) and g(x,y,z) denote the following:

f (x,y,z) = x+ y+ z2 and g(x,y,z) =
1
x
+

1
y
+

1
z
= 1.

Setting ∇ f = λ∇g, we have

⟨1,1,2z⟩= λ

〈
− 1

x2 ,−
1
y2 ,−

1
z2

〉
,

which implies that x2 = y2 = 2z2 =−λ . Note that x2 = y2 so x = y or x =−y. As x,y ≥ 0, then the case where
x =−y does not make sense. We consider the case where x = y. Substituting into g(x,y,z) = 0 yields

1
x
+

1
x
+

2
1
3

x
2
3
= 1.

Observe that x = 4 satisfies the equation, implying that y = 4 and z = 2. Hence, fmin(4,4,2) = 12. □

Example 5.6 (Stewart p. 1018 Question 49; AM-GM inequality). The famous AM-GM inequality, where
AM stands for arithmetic mean and GM stands for geometric mean, can be proven using the Method of
Lagrange multipliers too. Some other notable proofs are by using backward-forward induction (proven by
Cauchy), using the exponential function ex (proven by Pólya), as well as Jensen’s inequality. The inequality
states that

x1 + . . .+ xn

n
≥ (x1 . . .xn)

1
n where x1, . . . ,xn ∈ R≥0

and equality is attained if and only if x1 = . . .= xn. We shall prove this inequality.
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Solution. The problem can be regarded as asking how do we maximise f (x1,x2, . . . ,xn) = x1x2 . . .xn subject to
the constraint g(x1,x2, . . . ,xn) = x1 + x2 + . . .+ xn = c. Using ∇ f = λ∇g,

x2x3 . . .xn = λ

x1x3 . . .xn = λ

... =
...

x1x2 . . .xn−1 = λ

This is a system of n equations. Multiplying all the left side of each equation together and equating them to the
product of the right side of each equation,

(x1x2 . . .xn)
n−1 = λ

n.

Hence,

(x1x2 . . .xn)
n−1

(x2x3 . . .xn)n−1 =
λ n

λ n−1

xn−1
1 = λ

x1 = λ
1

n−1

It can be shown that
x1 = x2 = . . .= xn = λ

1
n−1

so

x1 + x2 + . . .xn = nλ
1

n−1 = c

λ =
( c

n

)n−1

x1 = x2 = . . .= xn =
c
n

Now, note that f (x1,x2, . . . ,xn) = cn/nn. As g(x1,x2, . . . ,xn) = c, then

(x1 + x2 + . . .+ xn)
n

nn ≥ x1x2 . . .xn

so by taking the nth root on both sides, we obtain the AM-GM inequality! □



MA2104 MULTIVARIABLE CALCULUS Page 35 of 72

Chapter 6
Multiple Integrals

6.1
Double Integrals

We shall refer to Figure 16. Let f be a function of two variables defined over a rectangle R = [a,b]× [c,d].
We would like to define the double integral of f over R as the volume of the solid under the graph of z = f (x,y)
over R. Without a loss of generality, we let f (x,y)≥ 0 here.

We subdivide R into mn small rectangles, each of area ∆A, namely Ri j, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. The
volume of an infinitesimally small rectangular solid erected over Ri j is its height multiplied by its area, which
is f

(
x∗i j,y

∗
i j

)
∆A.

Using ideas of a Riemann sum, the double integral of f over R is defined by

∫∫
R

f (x,y) dA = lim
m,n→∞

n

∑
j=1

m

∑
i=1

f
(
x∗i j,y

∗
i j
)

∆A if the limit exists,

i.e. the volume of the solid that lies above the rectangle R and below the surface z = f (x,y) is∫∫
R

f (x,y) dA.

Figure 16: Geometric interpretation of the double integral

Proposition 6.1. If f (x,y) is continuous on R, then∫∫
R

f (x,y) dA always exists.

Proposition 6.2. Some properties of double integrals are as follows:
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(i) ∫∫
D
(α f (x,y)+g(x,y)) dA = α

∫∫
D

f (x,y) dA+
∫∫

D
g(x,y) dA where α ∈ R

This means that the integral operator is a linear transformation.
(ii) If f (x,y)≥ g(x,y) for all x ∈ D, then∫∫

D
f (x,y) dA ≥

∫∫
D

g(x,y) dA.

(iii) ∫∫
D

f (x,y) dA =
∫∫

D1

f (x,y) dA+
∫∫

D2

f (x,y) dA,

provided that D = D1 ∪D2 and D1 and D2 do not intersect except perhaps on their boundary.
(iv) If f , is bounded (i.e. m ≤ f (x,y)≤ M), then

mA(D)≤
∫∫

D
f (x,y) dA ≤ MA(D)

where A(D) denotes the area of D.

Note that (ii) of Proposition 6.2 uses the fact that

∫ b

a
f (x) dx =

∫ c

a
f (x) dx+

∫ b

c
f (x) dx

which is a familiar concept from MA2002.

Example 6.1 (Stewart p. 1040 Question 38). Find the volume of the solid that lies under the hyperbolic
paraboloid z = 3y2 − x2 +2 and above the rectangle R = [−1,1]× [1,2].

Solution. We have

V =
∫∫

R
z dA =

∫ 1

−1

∫ 2

1
3y2 − x2 +2 dydx

which evaluates to 52/3. □

Example 6.2 (Stewart p. 1040 Question 49). Use symmetry to evaluate the double integral

∫∫
R

xy
1+ x4 dA where R = {(x,y) : −1 ≤ x ≤ 1,0 ≤ y ≤ 1} .

Solution. We have

∫ 1

−1

∫ 1

0

xy
1+ x4 dydx =

∫ 0

−1

∫ 1

0

xy
1+ x4 dydx+

∫ 1

0

∫ 1

0

xy
1+ x4 dydx.

By symmetry (essentially the substitution u =−x),

∫ 0

−1

∫ 1

0

xy
1+ x4 dydx =−

∫ 1

0

∫ 1

0

uy
1+u4 dydu,

so it follows that the integral over R evaluates to 0. □
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6.2
Iterated Integrals

Definition 6.1 (iterated integral). Let f (x,y) be a function defined on R = [a,b]× [c,d].∫ d

c
f (x,y) dy means that x is regarded as a constant

and f (x,y) is integrated with respect to y from y = c to y = d. Thus,∫ d

c
f (x,y) dy is a function of x

and we can integrate it with respect to x from x = a to x = b. The resulting integral∫ b

a

∫ d

c
f (x,y) dydx

is known as an iterated integral.

Fubini’s theorem allows the order of integration to be changed in certain iterated integrals.

Theorem 6.1 (Fubini’s theorem). If f (x,y) is absolutely convergent and continuous on R = [a,b]×
[c,d], ∫∫

R
f (x,y) dA =

∫ b

a

∫ d

c
f (x,y) dydx =

∫ d

c

∫ b

a
f (x,y) dxdy.

As mentioned earlier, for Fubini’s Theorem to be applied, f must be an absolutely convergent integral.
Similar to the absolute convergence of series, we have a similar definition for integrals.

Definition 6.2 (absolute convergence). if an integral is said to be absolutely convergent, then∫
R
| f (x)| dx < ∞.

Example 6.3. One of the ways to evaluate the famous Gaussian integral, which is∫
∞

−∞

e−x2
dx =

√
π involves Fubini’s theorem.

Proof. We will use polar coordinates. Let I be the original integral. Then,

I =
∫

∞

−∞

e−x2
dx =

∫
∞

−∞

e−y2
dy

I2 =

(∫
∞

−∞

e−x2
dx
)(∫

∞

−∞

e−y2
dy
)

=
∫

∞

−∞

∫
∞

−∞

e−x2
e−y2

dxdy by Fubini’s theorem

=
∫

∞

−∞

∫
∞

−∞

e−(x2+y2) dxdy

We will do a change of variables from Cartesian to polar coordinates. We will establish the following result

dxdy = rdrdθ
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using the Jacobian of a suitable matrix. That is,

J =

[
∂x/∂ r ∂x/∂θ

∂y/∂ r ∂y/∂θ

]
.

Since dxdy = det(J)drdθ , then the result follows. Hence, the integral can be transformed to

I2 =
∫ 2π

0

∫
∞

0
re−r2

drdθ = π

and we conclude that I =
√

π .

Proposition 6.3 (type 1 region). Consider a region D bounded by the vertical lines x = a and x = b
and the curves y = g1(x) and y = g2(x), where a < x < b and g1(x)< y < g2(x) (Figure ??). The double
integral of f over D can be expressed as∫∫

D
f (x,y) dA =

∫ b

a

∫ g2(x)

g1(x)
f (x,y) dydx.

Proposition 6.4 (type 2 region). Consider a region D bounded by the horizontal lines y = c and y = d
and the curves x = h1(y) and x = h2(y), where c < y < d and h1(y)< x < h2(y) (Figure 18). The double
integral of f over D can be expressed as∫∫

D
f (x,y)dA =

∫ d

c

∫ h2(y)

h1(y)
f (x,y)dxdy.

x

y

x = a x = b

D

y = g2(x)

y = g1(x)

Figure 17: Type 1 region

x

y

y = c

y = d

D

x = h1(y) x = h2(y)

Figure 18: Type 2 region

Example 6.4. We can evaluate ∫ 8

0

∫ 2

3√y
ex4

dxdy

by changing the order of integration because∫
ex4

dx does not have an elementary anti-derivative.

Solution. Consider the graph of x= 3
√

y, or by making y the subject, y= x3. Note that the desired region satisfies
both 3

√
y ≤ x ≤ 2 so y ≤ x3 ≤ 8 and 0 ≤ y ≤ 8. Thus, if we were to change the order of integration such that we
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integrate with respect to y first, then we have the inequalities 0 ≤ y ≤ x3 and 0 ≤ x ≤ 2. Hence,∫ 8

0

∫ 2

3√y
ex4

dxdy =
∫ 2

0

∫ x3

0
ex4

dydx =
∫ 2

0

[
yex4
]x3

0
dx =

1
4
(
e16 −1

)
.

□

Example 6.5. We can also prove that∫ 1

0

∫ 1

x
sin
(
y2) dydx =

1
2
(1− cos1)

by changing the order of integration too.

Solution. Note that x ≤ y ≤ 1 and 0 ≤ x ≤ 1. Hence, if we were to integrate with respect to x first, note that
0 ≤ x ≤ y. Then, since 0 ≤ y ≤ 1, we have∫ 1

0

∫ 1

x
sin
(
y2) dydx =

∫ 1

0

∫ y

0
sin
(
y2) dxdy =

∫ 1

0

[
xsin

(
y2)]y

0 dy =
1
2
(1− cos1) .

□

Example 6.6 (Stewart Calculus Early Transcendentals p. 1048 Question 25). Evaluate the integral∫∫
R

cos
(

y− x
y+ x

)
dA,

where R is the trapezoidal region with vertices (1,0) ,(2,0) ,(0,2) and (0,1).

Solution. Let u = y− x and v = y+ x. Then,

x =
v−u

2
and y =

v+u
2

.

So, the determinant of the Jacobian matrix is∣∣∣∣∣det

[
−1/2 1/2
1/2 1/2

]∣∣∣∣∣= 1
2

Hence, the integral becomes ∫ 2

1

∫ v

−v
cos
(u

v

)
· 1

2
dudv,

which evaluates to 3sin1. □

Example 6.7 (Stewart Calculus Early Transcendentals p. 1048 Question 27). Evaluate the integral∫∫
R

ex+y dA,

where R is given by the inequality |x|+ |y| ≤ 1.

Solution. The region R is bounded by the vertices (1,0) ,(0,−1) ,(−1,0) ,(0,1). Consider letting u = x−y and
v = x+ y, so similar to Example 6.6, the absolute value of the determinant of the Jacobian matrix is 1/2. As
such, the new integral is bounded by the square with vertices (−1,−1) ,(−1,1) ,(1,1) ,(1,−1). The integral
becomes ∫ 1

−1

∫ 1

−1
ev · 1

2
dudv

which evaluates to e−1/e. □
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Example 6.8 (Stewart Calculus Early Transcendentals p. 1048 Question 28). Let f be continuous on [0,1]
and let R be the triangular region with vertices (0,0) ,(1,0) and (0,1). Show that∫∫

R
f (x+ y) dA =

∫ 1

0
u f (u) du.

Solution. Let u = x+ y and v = x− y. Then,

x =
u+ v

2
and y =

u− v
2

which implies |det(J)|= 1
2
.

Hence, the integral becomes ∫ 1

0

∫ u

−u
f (u) · 1

2
dvdu =

∫ 1

0
u f (u) du

so the result holds. □

Example 6.9 discusses a proof of the Basel problem

ζ (2) =
∞

∑
n=1

1
n2 =

π2

6

by evaluating an interesting double integral.

Example 6.9 (Stewart Calculus Early Transcendentals p. 1053 Questions 5 and 6). The double integral∫ 1

0

∫ 1

0

1
1− xy

dxdy

is an improper integral and could be defined as the limit of double integrals over the rectangle [0, t]× [0, t] as
t → 1−. But if we expand the integrand as a geometric series, we can express the integral as the sum of an
infinite series. Show that ∫ 1

0

∫ 1

0

1
1− xy

dxdy =
∞

∑
n=1

1
n2 .

Leonhard Euler was able to find the exact sum of this series. In 1736 he proved that

∞

∑
n=1

1
n2 =

π2

6
.

We ask you to prove this fact by evaluating the double integral mentioned earlier. Start by making the change
of variables

x =
u− v√

2
and y =

u+ v√
2
.

This gives a rotation about the origin through the angle π/4.
Hint: If, in evaluating the integral, you encounter either of the expressions (1− sinθ)/cosθ or (cosθ)/(1+
sinθ), you might like to use the identity cosθ = sin((π/2)−θ) and the corresponding identity for sinθ .

Solution. For the first part, we note that

1
1− xy

= 1+(xy)+(xy)2 + . . .

since the RHS is an infinite geometric series with first term 1 and common ratio xy. In
MA2108/MA2311/MA3210, we say that the series has a radius of convergence of 1. In particular, the series
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converges if and only if −1 < xy < 1. As such,∫ 1

0

∫ 1

0

1
1− xy

dxdy =
∫ 1

0

∫ 1

0
1+ xy+(xy)2 + . . . dxdy

=
∫ 1

0
1+

y
2
+

y2

3
+

y3

4
+

y4

5
+ . . . dy

= 1+
1
4
+

1
9
+

1
16

+
1

25
+ . . .

which indeed yields the sum of reciprocals of squares on the RHS.

We then evaluate the double integral. Using the substitutions

x =
u− v√

2
and y =

u+ v√
2
,

we see that

|det(J)|=
(

1√
2

)2

·2 = 1

The integral becomes ∫ 1/
√

2

0

∫ u

−u

2
2−u2 + v2 dvdu+

∫ √
2

1/
√

2

∫ √
2−u

u−
√

2

2
2−u2 + v2 dvdu

which evaluates to π2/6. □

6.3
Double Integrals in Polar Coordinates

We first introduce the area differential in polar coordinates. Consider a point (r,θ) on a plane. Small
increments in r and θ are denoted by dr and dθ respectively. The area of the new sector is dA = rdrdθ ,
which is known as the area differential.

Figure 19: Area differential in polar coordinates

Proposition 6.5. Let f be a continuous function defined on a polar rectangle R, where

R = {(r,θ) : 0 ≤ a ≤ r ≤ b,α ≤ θ ≤ β}

and 0 ≤ β −α ≤ 2π . The double integral of f over R can be expressed as∫∫
R

f (x,y) dA =
∫

β

α

∫ b

a
f (r cosθ ,r sinθ) rdrdθ .
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Example 6.10 (MA2104 AY24/25 Sem 2 Tutorial 6). Find the region R in the xy-plane such that the value
of ∫∫

R
4− x2 −2y2 dxdy is a maximum.

Justify your answer.

Solution. Let f (x,y) = 4− x2 − 2y2. Then, it is ideal if we have f (x,y) ≥ 0 for all (x,y) ∈ R. Note that the
graph of x2 + 2y2 ≤ 4 represents all points that are interior and on the boundary of the ellipse centred at the
origin with semi-major axis 2 and semi-minor axis

√
2. As such, the optimal region R which maximises the

integral is

R =
{
(x,y) ∈ R2 : x2 +2y2 ≤ 4

}
.

In fact, we can use polar coordinates to find the maximum area (though this is not explicitly required by the
question). Suppose x = 2r cosθ and y =

√
2r sinθ . So,

∂ (x,y)
∂ (r,θ)

= det

[
∂x/∂ r ∂x/∂θ

∂y/∂ r ∂y/∂θ

]
= det

[
2cosθ −2r sinθ√
2sinθ

√
2r cosθ

]
= 2

√
2r.

Hence, dxdy = 2
√

2rdrdθ . The new integrated is 4
(
1− r2

)
, so the new integral is∫ 2π

0

∫ 1

0
4
(
1− r2)(2

√
2r
)

dr = 4π
√

2.

□
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6.4
Surface Area

Let f be a differentiable function of 2 variables defined on a domain D. We wish to find the surface area,
A(S), of the graph of f over D, i.e. ∫∫

D
dS.

We wish to express the differential of the surface area, dS, in terms of the differential of the domain, dA. Note
that dA = |dxdy|.

x

y

z = f (x,y)

D

dx

dy

PRPQ
dS

dA

Figure 20: Derivation of the surface area formula

From Figure 20, let
−→
PQ = ⟨dx,0, fx (x,y)dx⟩ and

−→
PR = ⟨0,dy, fy (x,y)dy⟩. Since

−→
PQ and

−→
PR are linearly

independent and span the tangent plane, it is clear that the area of the tangent plane (which is in the shape
of a parallelogram) formed by

−→
PQ and

−→
PR can be calculated by taking their cross product. That is,

area of tangent plane =
∣∣∣−→PQ×−→

PR
∣∣∣= |⟨− fx,− fy,1⟩dxdy|=

√
f 2
x + f 2

y +1 dA

and hence, by the Fundamental Theorem of Calculus,

A(S) =
∫∫

D

√
f 2
x + f 2

y +1 dA.

Theorem 6.2 (surface area). The area of the surface with equation z = f (x,y), where (x,y) ∈ D and
fx and fy are continuous, is

A(S) =
∫∫

D

√
f 2
x + f 2

y +1 dA.

Example 6.11 (MA2104 AY 24/25 Sem 2 Tutorial 10). Find the area of the surface consisting of the part
of the sphere x2 + y2 + z2 = a2 that lies within the cylinder x2 + y2 = ax and above the xy− plane.

Solution. Let f (x,y) =
√

a2 − x2 − y2, so

fx (x,y) =− x√
a2 − x2 − y2

and fy (x,y) =− y√
a2 − x2 − y2

.
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Using polar coordinates,

fx (r,θ) =− r cosθ√
a2 − r2

and fy (r,θ) =− r sinθ√
a2 − r2

.

As x2 + y2 = ax, we have r2 = ar cosθ so r = acosθ . Since r,a ≥ 0, then cosθ ≥ 0, so −π/2 ≤ θ ≤ π/2. So,
the surface area is

∫
π/2

−π/2

∫ acosθ

0

√
1+ f 2

x + f 2
y r drdθ =

∫
π/2

−π/2

∫ acosθ

0

√
1+

r2

a2 − r2 r drdθ

=
∫

π/2

−π/2

∫ acosθ

0

ar√
a2 − r2

drdθ

= a2 (π −2)

□

6.5
Triple Integrals

Similar to using a Riemann sum to explain double integrals, for triple integrals, we consider a continuous
function f : B ⊆ R3 → R, where B is defined to be the following rectangular solid:

B = {(x,y,z) : a ≤ x ≤ b,c ≤ y ≤ d,r ≤ z ≤ s}

Dividing [a,b], [c,d] and [r,s] into l,m and n equal subintervals respectively, the triple integral of f over B is

∫∫∫
R

f (x,y,z) dV = lim
l,m,n→∞

l

∑
i=1

m

∑
j=1

n

∑
k=1

f
(
x∗i jk,y

∗
i jk,z

∗
i jk
)

∆V .

Note that Fubini’s theorem still applies to triple integrals. There are 3! = 6 such iterated integrals involved
and they are all equal. The limits of integration are usually tricky to find. With sufficient practice, one should
eventually be proficient at it.

Example 6.12 (Stewart p. 1040 Question 42). Find the volume of the solid in the first octant bounded by

the graph of z = 16− x2 and the plane y = 5.

Solution. The volume is ∫ 4

0

∫ 5

0

∫ 16−x2

0
dzdydx =

640
3

.

□

Example 6.13. Suppose we wish to evaluate ∫∫∫
E

xy dV ,

where E is the solid tetrahedron with vertices (0,0,0),(1,0,0),(0,2,0) and (0,0,3).

Solution. We find the equation of the plane that is formed by the vertices (1,0,0),(0,2,0) and (0,0,3) since
the tetrahedron is in the first octant where all the x,y and z values are positive. The equation of the plane
is 6x+ 3y+ 2z = 6. Hence, E is the region that lies below the plane with x-, y-, and z-intercepts 1,2 and 3
respectively. Now, we find the bounds for x, y and z.
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Suppose we integrate in the order dzdydx, then note that as 6x+ 3y+ 2z = 6, then z = 1
2(6− 6x− 3y), which

implies that 0 ≤ z ≤ 1
2(6− 6x− 3y). Next, y = 2

3(3− 3x− z), so when z = 0, we obtain an upper bound for y,
which is 2−2x. Hence, 0 ≤ y ≤ 2−2x. It is clear that 0 ≤ x ≤ 1. Combining everything together (I omitted the
integration process since it is trivial),∫∫∫

E
xy dV =

∫ 1

0

∫ 2−2x

0

∫ 1
2 (6−6x−3y)

0
xy dzdydx =

1
10

.

□

Definition 6.3 (Steinmetz solid). A Steinmetz solid is the solid obtained by the intersection of two or
three cylinders of equal radius at right angles. In particular, a bicylinder is the intersection of 2 cylinders;
a tricylinder is the intersection of 3 cylinders (Figure 21).

Proposition 6.6. The following properties hold:
(i) For a bicylinder of radius r,

V =
16
3

r3 and A = 16r2.

(ii) For a tricylinder of radius r,

V =V = 8
(

2−
√

2
)

r3 and A = 24
(

2−
√

2
)

r2.

Figure 21: Forming a tricylinder

We shall prove a result in Proposition 6.6. That is, the volume of a bicylinder of radius r is 16r3/3.

Proof. Without a loss of generality, suppose that the two cylinders have equations x2+y2 = r2 and x2+z2 = r2.
As z =±

√
r2 − x2 and y =±

√
r2 − x2, then plugging into the formula gives∫∫∫

R
1 dV =

∫ r

−r

∫ √
r2−x2

−
√

r2−x2

∫ √
r2−x2

−
√

r2−x2
1 dzdydx =

∫ r

−r

∫ √
r2−x2

−
√

r2−x2
2
√

r2 − x2 dydx

which is equal to ∫ r

−r
4
(
r2 − x2) dx.

Evaluating this integral, the result follows.

The formulae for the volumes of classical 3D shapes, which include the cuboid, circular cylinder, sphere and
cone can be derived through integration. Conversion to cylindrical or spherical coordinates are more helpful,
where appropriate†.

†You may visit the following link which directs you to a summary page of the volumes of 3D shapes using integration created by the
University of Washington.

https://sites.math.washington.edu//~aloveles/Math324Fall2013/f13m324TripleIntegralExamples.pdf
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Proposition 6.7 (type 1 region). For a Type 1 region E (Figure 22), it is of the form

E = {(x,y,z) : (x,y) ∈ D,u1 (x,y)≤ z ≤ u2 (x,y)} .

We can write the triple integral as follows:∫∫∫
E

f (x,y,z) dV =
∫∫

D

[∫ u2(x,y)

u1(x,y)
f (x,y,z) dz

]
dA

Proposition 6.8 (type 2 region). For a Type 2 region E, it is of the form

E = {(x,y,z) : (y,z) ∈ D,u1 (y,z)≤ x ≤ u2 (y,z)} .

We can write the triple integral as follows:∫∫∫
E

f (x,y,z) dV =
∫∫

D

[∫ u2(y,z)

u1(y,z)
f (x,y,z) dx

]
dA

Proposition 6.9 (type 3 region). For a Type 3 region E, it is of the form

E = {(x,y,z) : (x,z) ∈ D,u1 (x,z)≤ y ≤ u2 (x,z)} .

We can write the triple integral as follows:∫∫∫
E

f (x,y,z) dV =
∫∫

D

[∫ u2(x,z)

u1(x,z)
f (x,y,z) dy

]
dA

x

y

z

z = u1(x,y)

z = u2(x,y)

D

E

Figure 22: Type 1 region

Example 6.14 (Stewart Calculus Early Transcendentals p. 1053 Question 4). If a,b, and c are constant
vectors, r is the position vector xi+ yj+ zk, and E is given by the inequalities 0 ≤ a · r ≤ α, 0 ≤ b · r ≤ β , 0 ≤
c · r ≤ γ , show that ∫∫∫

E
(a · r)(b · r)(c · r) dV =

(αβγ)2

8 |a · (b× c)|
.
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Solution. Suppose a · r = s, b · r = t, and c · r = u. Hence, the integrand becomes stu. Note that |a · (b× c)|
yields the signed volume of the parallelepiped spanned by the vectors a,b,c. The integral becomes

∫
γ

0

∫
β

0

∫
α

0
stu · 1

|a · (b× c)|
dsdtdu,

which yields the desired expression. □

Proposition 6.10 (triple integrals in cylindrical coordinates). For conversion to cylindrical coordi-
nates, consider a region E defined by

E = {(r,θ ,z) : α ≤ θ ≤ β ,h1 (θ)≤ r ≤ h2 (θ) ,u1 (r,θ)≤ z ≤ u2 (r,θ)} .

The triple integral of f (x,y,z) over E can be expressed as∫∫∫
E

f (x,y,z) dV =
∫

β

α

∫ h2(θ)

h1(θ)

∫ u2(θ)

u1(θ)
f (r cosθ ,r sinθ ,z)r dzdrdθ .

In Proposition 6.10, the Jacobian of the transformation has determinant r. We refer to this as the volume
differential in cylindrical coordinates. See Figure 23 for a geometric interpretation of this change of variables
result.

x

y

z

θ θ +dθ

r
r+dr

z

z+dz

θ

dV = r dzdrdθ

Figure 23: Geometric interpretation of volume differential in cylindrical coordinates

Proposition 6.11 (triple integrals in spherical coordinates). For spherical coordinates, we consider a
spherical wedge E where its spherical coordinates are bounded as follows:

E = {(ρ,θ ,φ) : a ≤ ρ ≤ b,α ≤ θ ≤ β ,c ≤ φ ≤ d}

The triple integral of f over E can be expressed as∫∫∫
E

f (x,y,z) dV =
∫ d

c

∫
β

α

∫ b

a
f (ρ sinφ cosθ ,ρ sinφ sinθ ,ρ cosφ)ρ

2 sinφ dρdθdφ .
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In Proposition 6.11, the Jacobian of the transformation has determinant ρ2 sinφ . We refer to this as the
volume differential in spherical coordinates. See Figure 24 for a geometric interpretation of this change of
variables result.

x

y

z

θ
θ +dθ

θ

ρ

ρ +dρ

φ

dφ

ρ sinφ dθ

ρ dφ

Figure 24: Geometric interpretation of volume differential in spherical coordinates

Example 6.15 (MA2104 AY24/25 Sem 2 Tutorial 7). Use a triple integral to find the volume of the solid
bounded by the elliptic cylinder 4x2 + z2 = 4 and the planes y = 0 and y = z+2.

Solution. Let D denote the elliptical region, so

D =
{
(x,z) ∈ R2 : 4x2 + z2 ≤ 4

}
in the xz-plane.

We can let x = r cosθ and z = 2r sinθ so

D =
{
(r,θ) ∈ R2 : 0 ≤ r ≤ 1,0 ≤ θ ≤ 2π

}
.

By considering the Jacobian, we have

∂ (x,y)
∂ (r,θ)

= det

[
∂x/∂ r ∂x/∂θ

∂ z/∂ r ∂ z/∂θ

]
= det

[
cosθ −r sinθ

2sinθ 2r cosθ

]
= 2r.

So, the integral becomes

V =
∫ 2π

0

∫ 1

0

∫ 2r sinθ+2

0
2r dydrdθ ,

where z in the upper limit of the innermost integral is replaced with 2r sinθ . One can evaluate this integral to
obtain the volume of the solid, which is 4π . □
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Example 6.16 (MA2104 AY24/25 Sem 2 Tutorial 7). Evaluate∫∫∫
E

z dV,

where E is the region lying between the spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4 in the first octant.

Solution. We shall consider spherical coordinates. Let x = ρ cosθ sinφ , y = ρ sinθ sinφ , and z = ρ cosφ . Also,
recall Proposition 3.1, which states that x2 + y2 + z2 = ρ2. Noting that the region is in the first octant, we have

1 ≤ ρ ≤ 2 0 ≤ φ ≤ π

2
0 ≤ θ ≤ π

2
.

As such, the integral becomes ∫
π/2

0

∫
π/2

0

∫ 2

1
ρ cosφ ·ρ2 sinφ dρdφdθ =

15
16

π.

□

Example 6.17 (MA2104 AY24/25 Sem 2 Tutorial 7). Evaluate the integral

∫ 3

0

∫ √
9−y2

0

∫ √
18−x2−y2

√
x2+y2

x2 + y2 + z2 dzdxdy by changing to spherical coordinates.

Solution. We recall that x = ρ cosθ sinφ and y = ρ sinθ sinφ , so x2 + y2 = ρ2 sin2
φ . As√

x2 + y2 ≤ z ≤
√

18− x2 − y2 then ρ sinφ ≤ ρ cosφ ≤
√

18−ρ2 sin2
φ .

From here, one can deduce that 0 ≤ ρ ≤
√

18. The region in the first octant satisfies the inequality 0 ≤ θ ≤ π/2.
Next, by considering ρ sinφ = ρ cosφ , we have tanφ = 1, so φ = π/4. As such, 0 ≤ φ ≤ π/4. The integral
becomes

∫
π/2

0

∫
π/4

0

∫ √
18

0
ρ

2 ·ρ2 sinφ dρdφdθ =
π

2

(
1− 1√

2

)(
972

√
2

5

)
=

486
(√

2−1
)

5
π.

□

Example 6.18 (Stewart Calculus Early Transcendentals p. 1052 Question 54).
(a) Evaluate ∫∫

D

1

(x2 + y2)n/2 dA,

where n is an integer and D is the region bounded by the circles with centre at the origin and radii r and
R, where 0 < r < R.

(b) For what values of n does the integral in (a) have a limit as r → 0+?
(c) Find ∫∫∫

E

1

(x2 + y2 + z2)n/2 dV,

where E is the region bounded by the spheres with the centre at the origin and radii r and R, where
0 < r < R.

(d) For what values of n does the integral in (c) have a limit as r → 0+?

Solution.
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(a) Using polar coordinates, the integral becomes∫ 2π

0

∫ R

r

1

(α2)n/2 ·α dαdθ = 2π

(
r2−n

n−2
− R2

nRn −2Rn

)
.

(b) n ≤ 1
(c) Using spherical coordinates, the integral becomes∫

π/2

0

∫ 2π

0

∫ R

r

1

(ρ2)n/2 · ρ
2 sinφ dρdθdφ = 2π

(
r3−n

n−3
− R3

nRn −3Rn

)
.

(d) n ≤ 2

6.6
Change of Variables and the Jacobian

Definition 6.4 (bijective map). Consider two regions S,R ⊆ R2, where (u1,v1) ∈ S and (x1,y1) ∈ R.
Let T : S → R be a C1 transformation,

T : S → R where (u1,v1) 7→ (x1,y1) be a C1 transformation.

We say that
T is bijective if and only if T is injective and surjective.

In Definition 25, assumming that T−1 exists, the point (x1,y1) in R will get mapped to (u1,v1) in S. This
shows that T is injective. T is surjective too since (u1,v1) and (x1,y1) have pre-images, which are (x1,y1) and
(u1,v1) respectively, implying that T is bijective.

v

u

y

x

S
(u1,v1)

R
(x1,y1)

T

T−1

Figure 25: A bijective map T

The Jacobian of the transformation T given by x = x(u,v),y = y(u,v) is

∂ (x,y)
∂ (u,v)

=

∣∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣= ∂x
∂u

∂y
∂v

− ∂x
∂v

∂y
∂u

.

The area differential, dA, can be written as

dA =

∣∣∣∣∂ (x,y)
∂ (u,v)

∣∣∣∣dudv.

As such, we deduce the following important result (Theorem 6.3).

Theorem 6.3 (change of variables). Let T (u,v) be a bijective C1-transformation whose Jacobian is
non-zero except possibly at a finite number of points. Suppose T maps a region S in the uv-plane onto a
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region R of the xy-plane. Suppose f is continuous on R. Then,∫∫
R

f (x,y) dA =
∫∫

S
f (x(u,v) ,y(u,v))

∣∣∣∣∂ (x,y)
∂ (u,v)

∣∣∣∣ dudv.

For the case of triple integrals, we have a completely analogous formula for change of variables.
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Chapter 7
Introduction to Vector Calculus

7.1
Vector Fields

Definition 7.1 (vector field). Let D ⊆R2. A vector field on D is a function F that assigns to each point
(x,y) in D a two dimensional vector F(x,y). F can be written in terms of its component functions. That
is

F(x,y) = ⟨P(x,y),Q(x,y)⟩ or F = Pi+Qj.

Remark 7.1. For the vector field to be defined on its domain, D, each of its component vectors must be
continuous on D.

There is a variety of vector fields in R2. For example, there are radial and rotational vector fields.

Example 7.1 (radial field and rotational field). A radial field is one where all the vectors point towards or
away from the origin and is rotationally symmetric. An example would be F = xi+ yj (Figure 26a).

An example of a rotational field in R2 is F =−yi+ xj (Figure 26b).

x

y

(a) Radial field F = xi+ yj

x

y

(b) Rotational field F =−yi+ xj

Figure 27 depicts the electric field of an electric dipole — two opposite charges, one positive (+q) and one
negative (−q). The field lines originate from the positive charge and end on the negative charge. Electric field
lines are a visual aid. Each line indicates the direction of the electric field at every point along it. The strength
(magnitude) of the field at a given location is often inferred from how closely spaced the lines are in that region.
Regions where the lines are packed densely indicate a stronger field, and where they are more spread out, the
field is weaker.
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E

E

E

E

E

E

+q −q

Figure 27: An electric field involving a positive and a negative point charge

We can also extend this idea to 3-dimensional vector fields.

Definition 7.2 (vector field). Let E ⊆R3. A vector field on E is a function F that assigns to each point
(x,y,z) in E a three dimensional vector F(x,y,z). In terms of its component functions, F can be written
as

F(x,y,z) = ⟨P(x,y,z),Q(x,y,z),R(x,y,z)⟩ or F = Pi+Qj+Rk

7.2
Gradient Fields

Definition 7.3 (gradient vector field). For any n ≥ 2, if

f : Rn → R is differentiable then ∇ f is a vector field on R2

and it is the gradient vector field of f .

Note that the gradient vectors are perpendicular to the level curves as proven using the chain rule.

Definition 7.4 (conservative vector field). A vector field F is conservative if it is the gradient of some
scalar function, i.e.

there exists a differentiable function f such that F = ∇ f .

In this situation, f is a potential function for F.

7.3
Introduction to Line Integrals

Definition 7.5 (line integral). Consider a plane curve C with equation r(t) = x(t)i + y(t)j, where
a ≤ t ≤ b. Assume that C is a smooth curve, i.e. r′(t) ̸= 0, and r′(t) is continuous. Let f (x,y) be a
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continuous function defined in a domain containing C. The line integral of C is

∫
C

f (x,y) ds =
∫ b

a
f (x(t) ,y(t))

√(
dx
dt

)2

+

(
dy
dt

)2

dt.

Recall from MA2002 that

∫ b

a

√(
dx
dt

)2

+

(
dy
dt

)2

dt gives the arc length of the curve from a to b.

Proposition 7.1. A piecewise smooth curve C can be regarded as the union of a finite number of smooth
curves, Ci, where 1 ≤ i ≤ n, or in other words

C =
n⋃

i=1

Ci where the initial point of Ci+1 is the terminal point of Ci.

In Graph Theory, the above is the same as a finite walk. The line integral f along C can hence, be written
as ∫

C
f (x,y) ds =

n

∑
i=1

∫
Ci

f (x,y) ds.

Example 7.2 (MA2104 AY24/25 Sem 2 Tutorial 8). Evaluate∫
C

yz dx+ xz dy+ xy dz,

where C consists of the line segments from (0,0,0) to (2,0,0), from (2,0,0) to (1,3,−1), and from (1,3,−1)
to (1,3,0).

Solution. Let C1 be the line segment from (0,0,0) to (2,0,0), so we obtain the parametric equations x = 2t and
y = z = 0, where 0 ≤ t ≤ 1. Thus, ∫

C1

yz dx+ xz dy+ xy dz = 0.

Let C2 be the line segment from (2,0,0) to (1,3,−1), so we obtain the parametric equations x = 2− t, y = 3t
and z =−t, where 0 ≤ t ≤ 1. So,∫

C2

yz dx+ xz dy+ xy dz =
∫ 1

0
3t (−t)(−1)+(2− t)(−t)(3)+(2− t)(3t)(−1) dt =−3.

Lastly, let C3 be the line segment from (1,3,−1) to (1,3,0), so we obtain the parametric equations x = 1, y = 3,
and z = t −1, where 0 ≤ t ≤ 1. Thus, ∫

C3

yz dx+ xz dy+ xy dz = 3.

By applying Proposition 7.1, we have∫
C

yz dx+ xz dy+ xy dz = 0−3+3 = 0.

□
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Proposition 7.2. The line integrals of f along C with respect to x and y respectively are∫
C

f (x,y) dx =
∫ b

a
f (x(t) ,y(t))x′ (t) dt and

∫
C

f (x,y) dx =
∫ b

a
f (x(t) ,y(t))y′ (t) dt.

Definition 7.6 (line integral). For a smooth space curve C given by r(t) = x(t)i+ y(t)j+ z(t)j where
a ≤ t ≤ b, the formula for a line integral of a scalar field in R3 is

∫
C

f (x,y,z) ds =
∫ b

a
f (x(t) ,y(t) ,z(t))

√(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2

dt.

x

y

z

C

z = f (x,y)

Figure 28: The line integral over a scalar field f is the area under the curve C along a surface z = f (x,y)

7.4
Line Integrals of Vector Fields

Proposition 7.3 (line integral). Let F be a continuous vector field defined on a domain containing a
smooth curve C given by a vector function r(t), where a ≤ t ≤ b. The line integral of F along C is∫

C
F ·dr =

∫ b

a
F(r(t)) · r′ (t) dt.

We can write F and C in their component forms, where

F(x,y,z) = P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k and C : r(t) = x(t)i+ y(t)j+ z(t)k.

Thus, ∫
C

F ·dr =
∫

C
P dx+Q dy+R dz.

Example 7.3 (MA2104 AY24/25 Sem 2 Tutorial 8). Let F(x,y,z) = x2i+ xyj+ z2k. Evaluate the integral

∫
C

F ·dr,

where C is given by the vector function r(t) = sin ti+ cos tj+ t2k, for 0 ≤ t ≤ π/2.
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Solution. By using the first formula in Proposition 7.3, we have

∫
C

F ·dr =
∫

π/2

0
F(r(t))r′ (t) dt =

∫
π/2

0

 sin2 t
sin t cos t

t4

 ·
 cos t
−sin t

2t

 dt =
∫

π/2

0
2t5 dt =

π6

192
.

□

Theorem 7.1 (fundamental theorem of line integrals). let C be a smooth curve given by r(t), where
a ≤ t ≤ b. Let f be a function of 2 or 3 variables whose gradient, denoted by ∇ f , is continuous. Then,∫

C
∇ f ·dr = f (r(b))− f (r(a)) .

One should see the fundamental theorem of line integrals (Theorem 7.1) as a concept analogous to the
second Fundamental Theorem of Calculus in MA2002 — now we apply this to any curve in a plane or space.

Example 7.4 (MA2104 AY24/25 Sem 2 Tutorial 8). Let F(x,y,z) = 4xezi+cosyj+2x2ezk and C the curve
with vector equation given by r(t) = ti+ t2j+ t4k, where 0 ≤ t ≤ 1. Find a function f such that F = ∇ f . Hence,
or otherwise, evaluate ∫

C
F ·dr.

Solution. Suppose ∇ f = ⟨ fx, fy, fz⟩. So,

f (x,y,z) = 2x2ez +g(y,z) f (x,y,z) = siny+h(x,z) f (x,y,z) = 2x2ez +u(x,y) .

By observation, we have f (x,y,z) = 2x2ez + siny. Hence, by the fundamental theorem of line integrals
(Theorem 7.1), we have∫

C
F ·dr = f (r(1))− f (r(0)) = 2 ·12 · e1 + sin1−0 = 2e+ sin1.

□

Definition 7.7 (path independence). Let F be a continuous vector field with domain D. The line
integral ∫

C
F ·dr is independent of path in D if

∫
C1

F ·dr =
∫

C2

F ·dr

for any 2 paths C1 and C2 in D that have the same initial and terminal points.

Definition 7.8 (closed path). A path is closed if its terminal point coincides with its initial point. Also,∫
C

F ·dr is independent of path in D if and only if
∫

C
F ·dr = 0 for every closed path in D.

In Definition 7.4, we said that a vector field F is conservative if there exists a differentiable function f such
that F = ∇ f .

Example 7.5 (gravitational field). In Physics, the gravitational field is conservative. Consider the gravitational
force between two objects of masses m and M. By Newton’s law of gravitation, we have the following result:

F =−GMm
|r|3

r where G is the universal gravitational constant and r = ⟨x,y,z⟩ .
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A negative sign is present in the formula to indicate that the gravitational field is attractive. In this case, the
potential function, f (known as the gravitational potential energy), is given by

f =
GMm
|r|

.

r

m
M

Figure 29: Gravitational force between two objects of masses m and M

Proposition 7.4. The following statements are equivalent:
(i) F is conservative on D

(ii)
∫

C
F ·dr is independent of path in D

(iii)
∫

C
F ·dr = 0 for any closed path C in D

Example 7.6 (MA2104 AY24/25 Sem 2 Tutorial 8). Let

F(x,y) = P(x,y) i+Q(x,y) j where P(x,y) =
−y

x2 + y2 and Q(x,y) =
x

x2 + y2 .

(a) Show that

∂P
∂y

=
∂Q
∂x

.

(b) Show that
∫

C
F ·dr is not always independent of path.

Solution.

(a) Trivial. Just check manually.
(b) We shall consider two scenarios regarding the curve C. Let C1 denote the upper semicircle centred at the

origin traversing in the anticlockwise direction. As such, let x = cos t and y = sin t. The integral over C1

becomes ∫
π

0
(−sin t)(−sin t)+(cos t)(cos t) dt = π.

On the other hand, let C2 denote the lower semicircle centred at the origin traversing in the clockwise
direction. As such, x = cos t and y =−sin t. The integral becomes∫

π

2π

(−sin t)(−sin t)+(cos t)(cos t) dt =−π.

One checks that the starting point and ending point of C1 and C2 both have coordinates (1,0) and (−1,0)

but they are travel in different directions. However, both integrals yield different outputs, so
∫

C
F · dr is

not independent of path.
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Definition 7.9 (open set and connected set). A set D is open if for every point P in D, we can construct
a disc about P such that it lies entirely within D. A connected set is one such that any two points in D
can be joined by a path in D.

Example 7.7 (open set and connected set). Figure 30a shows an open set D. To see why it is open, consider
a point P ∈ D. We can construct a small disc around it such that the disc lies completely within the set.

Figure 30b shows a connected set as any two points A and B can be joined by a path within the set.

Lastly, Figure 30c shows a disconnected set as there exist points J and K that cannot be joined by a path
within the set.

P

(a) An open set D

A B

(b) A connected set

J K

(c) A disconnected set

Definition 7.10 (simply-connected domain). A simply-connected region D is one in which every
simple closed curve in D encloses only points within D.

To show that a vector field F is non-conservative, it suffices to show that

there exist two paths with the same initial and terminal points but their line integrals are different.

On the other hand, to show that a vector field F(x,y) = P(x,y)i+Q(x,y)j in an open and simply-connected
region D ⊆ R2 is conservative, where P and Q have continuous partial derivatives on D, it suffices to show that

∂P
∂y

=
∂Q
∂x

.

In fact, this equation and the statement that F is conservative are equivalent!

Example 7.8 (MA2104 AY24/25 Sem 2 Tutorial 8). Let F(x,y) = eyi+xeyj. Determine whether or not F is
a conservative vector field. If it is, find a function f such that ∇ f = F.

Solution. Let

P(x,y) = ey and Q(x,y) = xey.

Then, one checks that ∂P/∂y = ey and ∂Q/∂x = ey, so F is a conservative vector field. Next, suppose ∇ f =
⟨ fx, fy⟩. Then,

fx = ey and fy = xey which imply f (x,y) = xey +g(y) and f (x,y) = xey +h(x) respectively.

We can choose g(y) = h(x) = c for some constant c, so f (x,y) = xey + c. Recall from Definition 7.4 that f is
said to be a potential function for F. □
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Chapter 8
Differential Operators

8.1
Green’s Theorem

Green’s theorem (Theorem 8.1) gives the relationship between a line integral along a simple closed curve
C on the plane and the double integral over the plane region D that C bounds.

Theorem 8.1 (Green’s theorem). Let C is a positively oriented (single counterclockwise transversal),
piecewise-smooth and simple closed curve on the plane and D is the region bounded by C (Figure 31). If
P(x,y) and Q(x,y) have continuous partial derivatives on an open simply connected region that contains
D, then ∫

C
Pdx+Qdy =

∫∫
D

(
∂Q
∂x

− ∂P
∂y

)
dA.

We say that ∂D =C, where ∂ denotes boundary. So, the boundary of the region D is the curve C!

C
D

Figure 31: Illustration of the curve C and region D mentioned in Theorem 8.1

Example 8.1 (MA2104 AY24/25 Sem 2 Tutorial 8). Evaluate∮
C

(
x3 − y3) dx+

(
x3 + y3) dy,

where C is the boundary of the region between the circles x2 + y2 = 1 and x2 + y2 = 9.

Solution. By Green’s theorem,∮
C

(
x3 − y3) dx+

(
x3 + y3) dy =

∫∫
D

3
(
x2 + y2) dA.

The region D is bounded by the circles x2 + y2 = 1 and x2 + y2 = 9 so we use polar coordinates. The integral
thus becomes ∫ 2π

0

∫ 3

1
3r2 · r drdθ = 120π.

□
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We can extend Theorem 8.1 to regions that are not simply-connected as they can be divided into regions
which are simply connected. The line integrals along the divides end up being opposite in orientation and cancel
out, and the result follows.

To analyse this, consider the region D in Figure 32, where ∂D = C1 +C2. We may cut the region D by 2
line segments L1 and L2 into 2 simply connected regions D′ and D′′ respectively. Observe that C1 and C2 are
traversing in opposite directions.

C1

C2

D

∂D =C =C1 +C2

L1

L1 L2

L2

D′′

D′

Figure 32: Green’s theorem for a non simply-connected region

As ∫∫
D

(
∂Q
∂x

− ∂P
∂y

)
dA =

∫∫
D′

(
∂Q
∂x

− ∂P
∂y

)
dA−

(
−
∫∫

D′′

(
∂Q
∂x

− ∂P
∂y

)
dA
)
,

then it can be verified that ∫∫
D

(
∂Q
∂x

− ∂P
∂y

)
dA =

∫∫
C

Pdx+Qdy,

which correlates with what was mentioned regarding Green’s Theorem.

8.2
Curl

Definition 8.1 (curl). Let F = Pi+Qj+Rk be a vector field in R3. The curl of F is

curlF =

(
∂R
∂y

− ∂Q
∂ z

)
i+
(

∂P
∂ z

− ∂R
∂x

)
j+
(

∂Q
∂x

− ∂P
∂y

)
k.

This formula can be remembered easily by considering a suitable cross product. We first define the
differential operator, ∇, by

∇ = i
∂

∂x
+ j

∂

∂y
+k

∂

∂ z
.

Note that

curl F = ∇×F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂ z

P Q R

∣∣∣∣∣∣∣
and upon expansion of the determinant yields the result as mentioned.

Proposition 8.1. Some properties of the curl of F are as follows:
(i) If f (x,y,z) has continuous second order partial derivatives, then curl(∇ f ) = 0

(ii) If F is conservative, then curl F = 0
(iii) If F is a vector field on R3 whose component functions have continuous partial derivatives and

curl F = 0, then F is conservative
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We will only prove (i).

Proof. By Clairaut’s theorem,

curl (∇ f ) =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂ z
∂ f
∂x

∂ f
∂y

∂ f
∂ z

∣∣∣∣∣∣∣=
(

∂ 2 f
∂y∂ z

− ∂ 2 f
∂ z∂y

)
i−
(

∂ 2 f
∂x∂ z

− ∂ 2 f
∂ z∂x

)
j+
(

∂ 2 f
∂x∂y

− ∂ 2 f
∂y∂x

)
k = 0.

The result follows.

8.3
Divergence

Definition 8.2 (divergence). Let F = Pi+Qj+Rk be a vector field in R3. The divergence of F is
defined by

div F = ∇ ·F =
∂P
∂x

+
∂Q
∂y

+
∂R
∂ z

.

Theorem 8.2. If P, Q and R have continuous second order partial derivatives, then div curl F = 0.

Proof. Use Clairaut’s theorem.

Theorem 8.3. A nice property related to divergence and curl is that if F and G are vector fields in R3,
then

div(F×G) = GcurlF−FcurlG.

Proof. Let F = Pi+Qj+Rk and G = Ai+Bj+Ck. Then,

div(F×G) = div


P

Q
R

×
A

B
C


= div

CQ−BR
AR−CP
BP−AQ

 .
Expanding yields

div(F×G) =
∂ (CQ)

∂x
− ∂ (BR)

∂x
+

∂ (AR)
∂x

− ∂ (CP)
∂x

+
∂ (BP)

∂x
− ∂ (AQ)

∂x

= A
(

∂R
∂ z

− ∂Q
∂ z

)
−B

(
∂R
∂x

− ∂P
∂ z

)
+C

(
∂Q
∂x

− ∂P
∂y

)
︸ ︷︷ ︸

GcurlF

+P
(

∂B
∂ z

− ∂C
∂y

)
−Q

(
∂A
∂ z

− ∂C
∂x

)
+R

(
∂A
∂y

− ∂B
∂x

)
︸ ︷︷ ︸

−FcurlG

and the result follows.

Another differential operator occurs when we compute the divergence of a gradient vector field ∇ f .

Definition 8.3 (Laplacian). If f is a function of three variables, then

div(∇ f ) = ∇ · (∇ f ) =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 .
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div(∇ f ) can also be written as ∇2 f , and we refer to this as the Laplace operator or the Laplacian.

Definition 8.3 has strong connections with Laplace’s equation, an example of a partial differential equation.
That is,

∇
2 f = 0 or equivalently

∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 = 0.

Consider a velocity vector field F. Divergence measures the amount of flow radiating at a point. The curl
measures the rotational effect of the vector field. If the flow is uniform and without compression or expansion,
then div F = 0. As such, if div F > 0, there is a net outflow; if div F < 0, there is a net inflow.

Definition 8.4 (incompressible and rotational vector fields). For a velocity vector field F,

divF = 0 implies F is incompressible and curlF = 0 implies F is irrotational.

Example 8.2. Here are some examples of various vector fields.

x

y

(a) Incompressible but not irrational

x

y

(b) Irrotational but not incompressible

x

y

(c) Neither irrotational nor incompressible

x

y

(d) Both irrotational and incompressible

Figure 33: Examples of velocity vector fields and their characteristics
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8.4
Green’s Theorem in Vector Forms

Theorem 8.4 (Green’s theorem, alt.). We have three alternative representations of Green’s theorem.
They are as follows:

(i) ∫
∂D

F ·dr =
∫∫

D
(curl F) ·k dA where F = Pi+Qj+0k is a vector field in R3

(ii) Suppose ∂D can be parametrised by r(t) = ⟨x(t),y(t)⟩, where a ≤ t ≤ b. Assuming the
pararmetrisation gives the positive orientation of ∂D, the unit tangent vector is

T =
r′(t)
∥r′(t)∥

.

Then, Green’s theorem can be also expressed as∫
∂D

F ·dr =
∫

∂D
F ·T ds where ds =

∥∥r′(t)
∥∥dt is the arc length differential.

(iii) We can also derive a formula involving the normal component of F along ∂D. So, Green’s theorem
will be stated in terms of divF. Using the parametrisation of C in (ii), one can easily verify (by
taking dot product with T) that the outward unit normal vector to ∂D, n, is

n(t) =
〈

y′ (t)
∥r′ (t)∥

,− x′ (t)
∥r′ (t)∥

〉
where n is pointing outwards.

So, ∫
∂D

F ·n ds =
∫∫

D
div F dA.

It only suffices to provide a brief explanation as to why (i) holds.

Proof. (i) uses the fact that

curl F =

(
∂Q
∂x

− ∂P
∂y

)
k.

(iii) follows from the first Green’s theorem that we discussed in Theorem 8.1.

In summary, we have the following 3 integrals:∫
∂D

F ·dr =
∫∫

D
(curl F) ·k dA and

∫
∂D

F ·dr =
∫

∂D
F ·T ds and

∫
∂D

F ·n ds =
∫∫

D
div F dA
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Chapter 9
Parametric Surfaces, Oriented Surfaces and Integral

Theorems

9.1
Tangent Planes

Definition 9.1 (parametric surface). Let r(u,v) = ⟨x(u,v),y(u,v),z(u,v)⟩ be a vector-valued function
defined on a region D in the uv-plane. Then,

S = {(x,y,z) : x = x(u,v),y = y(u,v),z = z(u,v),(u,v) ∈ D}

is a parametric surface. x = x(u,v), y = y(u,v) and z = z(u,v) are the parametric equations of S.

Definition 9.2 (tangent plane). Let S be a parametric surface defined by r(u,v) =

⟨x(u,v),y(u,v),z(u,v)⟩. The equation of the tangent plane to S at a point P0 with position vector
r0 = r(u0,v0) is

(r− r0) · (ru × rv),

where

ru =

〈
∂x
∂u

(u0,v0) ,
∂y
∂u

(u0,v0) ,
∂ z
∂u

(u0,v0)

〉
and rv =

〈
∂x
∂v

(u0,v0) ,
∂y
∂v

(u0,v0) ,
∂ z
∂v

(u0,v0)

〉
.

It is not surprising that the formula in Definition 9.2 holds as ru and rv lie on the tangent plane to S at P0,
so their cross product gives the normal to the plane.

Definition 9.3 (smooth surface). S is said to be smooth if ru × rv ̸= 0 for all (x,y) ∈ D.

9.2
Surface Area

Definition 9.4 (surface area). Suppose a smooth parametric surface S is injective except possibly on
the boundary of D (Figure 34). The surface area of S over D

A(S) =
∫∫

D
∥ru × rv∥ dA.

Example 9.1 (MA2104 AY24/25 Sem 2 Tutorial 10). Find a parametrisation of the portion of the cone
z =

√
x2 + y2/3 between the planes z = 1 and z = 4/3. Use the parametrisation to formulate the area of the

surface as an double integral. Thus evaluate the integral.

Solution. By using cylindrical coordinates, the equation of the cone can be rewritten as x= 3zcosθ , y= 3zsinθ ,
z = z. As such, consider writing s = ⟨3zcosθ ,3zsinθ ,z⟩, where 0 ≤ θ ≤ 2π and 1 ≤ z ≤ 4/3. By taking partial
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Figure 34: Geometric interpretation of the surface integral of a scalar field

derivatives, we have

sθ = ⟨−3zsinθ ,3zcosθ ,0⟩ and sz = ⟨3cosθ ,3sinθ ,1⟩ .

One checks that

sθ × sz =

−3zsinθ

3zcosθ

0

×
3cosθ

3sinθ

1

=

3zcosθ

3zsinθ

−9z

 so ∥sθ × sz∥= 3z
√

10.

By Definition 9.4, the surface area is∫ 2π

0

∫ 4/3

1
∥sθ × sz∥ dzdθ =

∫ 2π

0

∫ 4/3

1
3z
√

10 dzdθ =
7
√

10
3

π.

□

Example 9.2 (MA2104 AY24/25 Sem 2 Tutorial 10). Find a parametrisation of the portion of the plane
y+ 2z = 2 inside the cylinder x2 + y2 = 1. Use the parametrisation to formulate the area of the surface as a
double integral. Then, evaluate the integral.

Solution. By considering cylindrical coordinates, we have x = r cosθ , y = r sinθ , and z = z, so the equation of
the plane becomes r sinθ +2z = 2, so z = 1− r sinθ/2. Hence,

s =
〈

r cosθ ,r sinθ ,1− r
2

sinθ

〉
where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.

Taking partial derivatives yield

sθ =
〈
−r sinθ ,r cosθ ,− r

2
cosθ

〉
and sr =

〈
cosθ ,sinθ ,−1

2
sinθ

〉
.

One checks that sθ × sr = ⟨0,−r/2,−r⟩ so ∥sθ × sr∥=
√

5r/2. So, by Definition 9.4, the surface area is

∫ 2π

0

∫ 1

0

√
5

2
r drdθ =

√
5

2
π.

□
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Example 9.3 (MA2104 AY24/25 Sem 2 Tutorial 10). A torus of revolution (donut; see Figure 35) is obtained
by rotating a circle C on the xz−plane about the z−axis. Suppose C is of radius r and centre (R,0,0).

(i) Find a parametrization r(u,v) of the torus. Specify the set D in which (u,v) must lie.
(ii) Show that the surface area of the torus is 4π2Rr.

R
r

z

y

Figure 35: Torus of radius r with centre (R,0,0)

Solution.

(i) We first consider the circle on the xy-plane. We have y = 0 and (x−R)2 + z2 = r2. By using polar
coordinates, we can let x−R = r cosu and z = r sinu, where 0 ≤ u ≤ 2π . As the circle revolves around
the z-axis, we can let

x = (R+ r cosu)cosv y = (R+ r cosu)sinv z = r sinu,

where 0 ≤ v ≤ 2π . Hence,

r(u,v) = ⟨Rcosv+ r cosucosv,Rsinv+ r cosusinv,r sinu⟩ .

(ii) Taking partial derivatives, we have

ru = ⟨−r sinucosv,−r sinusinv,r cosu⟩ and rv = ⟨−Rsinv+ r cosusinv,Rcosv+ r cosucosv,0⟩ .

By computing the cross product, one can deduce that ∥ru × rv∥ = Rr + r2 cosu. By Definition 9.4, the
surface area is ∫ 2π

0

∫ 2π

0
Rr+ r2 cosu dudv = 4π

2Rr.

Let S be a surface which is the graph of a function f (x,y) defined on a domain D ⊆ R2. Recall that

A(S) =
∫∫

D

√
f 2
x + f 2

y +1 dA.

We have the following corollary, which is already taught in MA2002.

Corollary 9.1. Consider a curve y = f (x) where a ≤ x ≤ b, f (x) ≥ 0 and f ′(x) is continuous. S is
the surface obtained by rotating the curve 2π radians about the x-axis. Then, the area of the surface of
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revolution is given by

2π

∫ b

a
f (x)

√
1+ f ′ (x) dx.

The case where the curve x = g(y) (for c ≤ y ≤ d) is rotated about the y-axis yields a similar formula.

A surface integral is related to surface area much like how a line integral is related to arc length.

Theorem 9.1 (surface integral). Let f (x,y,z) be a continuous function defined on S. The surface
integral of f over S is ∫∫

S
f (x,y,z) dS =

∫∫
D

f (r(u,v))∥ru × rv∥ dA.

If S is the graph of z = g(x,y), then∫∫
S

f (x,y,z) dS =
∫∫

D
f (x,y,g(x,y))

√
1+g2

x +g2
y dA

9.3
Oriented Surfaces

Definition 9.5 (orientable surface). A surface S is orientable if it is two-sided, otherwise it is non-
orientable.

Example 9.4. Some examples of orientable surfaces include a sphere, plane, cylinder and elliptic paraboloid.
On the other hand, some examples of non-orientable surfaces are the Möbius strip (Figure 36) and the Klein
bottle†.

nn

Figure 36: Möbius strip

If S is orientable, then it is possible to choose a unit normal vector n at every point S so that n varies
continuously over S. In that case, S is an oriented surface and the choice of n is an orientation of S. There are
only 2 orientations of S, namely one for each side of the surface which corresponds to the choice where all n
point away from that side of the surface.

If S is the graph of z = g(x,y), then

n =
⟨−gx,−gy,1⟩√

g2
x +g2

y +1

†The interesting surfaces, namely the Möbius strip and the Klein bottle, will be revisited in MA4266 — a nice blend of Abstract
Algebra and Topology.
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is the upward orientation of S because the k-component is positive. As such, the downward orientation is simply
−n.

If S is written in parametric form r = r(u,v), then

n =
ru × rv

∥ru × rv∥
.

9.4
Surface Integrals of Vector Fields

Definition 9.6 (surface integral/flux). Let F be a continuous vector field defined on an oriented surface
S with unit normal vector n. The surface integral of F over S (also known as flux of F over S) is∫∫

S
F ·dS =

∫∫
S

F ·n dS =
∫∫

S
F · ru × rv

∥ru × rv∥
dS.

If S is the graph of a function z = g(x,y) over a region D in the xy-plane (assuming upward orientation of
S), and F = Pi+Qj+Rk, the integral in Definition 9.6 can be written as∫∫

S
F ·dS =

∫∫
D
(−Pgx −Qgy +R) dA.

Always check the following conditions before applying the formula in Definition 9.6:
(i) The surface S is traced out by r(u,v), (u,v) ∈ D, where D is the parameter domain

(ii) The orientation n given by the question is indeed the following expression:

ru × rv

∥ru × rv∥

Example 9.5 (MA2104 AY24/25 Sem 2 Tutorial 10). Evaluate the surface integral∫∫
S

F ·dS

for the vector field F(x,y,z) = zi+yj+xk, where S is the helicoid r(u,v) = ⟨ucosv,usinv,v⟩ (Figure 37), where
0 ≤ u ≤ 1,0 ≤ v ≤ π , with upward orientation.

Figure 37: Helicoid

Solution. We have

F (r(u,v)) = ⟨v,usinv,ucosv⟩ .
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Taking partial derivatives yield

ru = ⟨cosv,sinv,0⟩ and rv = ⟨−usinv,ucosv,1⟩ .

As such, ru × rv = ⟨sinv,−cosv,u⟩ so the surface integral is

∫∫
S

F ·dS =
∫

π

0

∫ 1

0

 v
usinv
ucosv

 ·
 sinv
−cosv

u

 dudv

=
∫

π

0

∫ 1

0
vsinv−usinvcosv+u2 cosv dudv

which evaluates to π . □

Example 9.6 (MA2104 AY24/25 Sem 2 Tutorial 10). Let F(x,y,z) = −yi+ xj+ 3zk. Evaluate the surface

integral
∫∫

S
F ·dS, where S is the hemisphere z =

√
16− x2 − y2 with the upward orientation.

Solution. Naturally, we shall use spherical coordinates. Since the hemisphere has equation z =
√

16− x2 − y2,
then x2 +y2 + z2 = 16, so ρ = 4. As such, let x = 4cosθ sinφ , y = 4sinθ sinφ , and z = 4cosφ , where 0 ≤ φ ≤
π/2 and 0 ≤ θ ≤ 2π . As such,

r(θ ,φ) = ⟨4cosθ sinφ ,4sinθ sinφ ,4cosφ⟩ .

So,

rφ = ⟨4cosθ cosφ ,4sinθ cosφ ,−4sinφ⟩ and rθ = ⟨−4sinθ sinφ ,4cosθ sinφ ,0⟩ .

This implies rφ × rθ =
〈
16cosθ sin2

φ ,16sinθ sin2
φ ,16cosφ sinφ

〉
.

Moreover, as F (r(θ ,φ)) = ⟨−4sinθ sinφ ,4cosθ sinφ ,12cosφ⟩, then the surface integral is∫∫
S

F ·dS =
∫ 2π

0

∫
π/2

0
−64cosθ sinθ sin3

φ +64cosθ sinθ sin3
φ +192cos2

φ sinφ dφdθ

which evaluates to 128π . □

9.5
Integral Theorems

Theorem 9.2 (Stokes’ theorem). Let S be an oriented piecewise smooth surface that is bounded by
a simple, closed, piecewise smooth boundary curve C with positive orientation. Let F be a vector field
whose components have continuous partial derivatives on an open region in R3 that contains S, where
F = Pi+Qj+Rk. Then,∫∫

S
(curl F) ·dS =

∫∫
D
−(Ry −Qz)gx − (Pz −Rx)gy +(Qx −Py) dA.

Proposition 9.1. If S1 and S2 are oriented surfaces with the same oriented boundary curve C and both
satisfy the hypotheses of Stokes’ theorem, then∫∫

S1

(curl F) ·dS =
∫∫

C
F ·dr =

∫∫
S2

(curl F) ·dS.

If curl F = 0 on all of R3, then F is conservative.
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Consider the special case where the surface S is flat and lies in the xy-plane with upward orientation. Then,
the unit normal is k and the surface integral becomes a double integral. It can be shown that this is simply
Green’s theorem (Theorem 8.1).

Example 9.7 (MA2104 AY24/25 Sem 2 Tutorial 10). Use Stokes’ theorem to evaluate∫
C

F ·dr,

where F(x,y,z) = x2zi+xy2j+ z2k and C is the curve of intersection of the plane x+y+ z = 1 and the cylinder
x2 + y2 = 9 oriented counterclockwise as viewed from above.

Solution. Let f (x,y,z) = 1− x− y, so fx =−1 and fy =−1. Also, curlF =
〈
0,x2,y2

〉
. By Stokes’ theorem,∫

C
F ·dr =

∫∫
S

curlF ·dS =
∫∫

S
x2 + y2 dxdy.

Here, S is the top surface of the cylinder x2 + y2 = 9 so naturally, we use polar coordinates to obtain∫∫
S

curlF ·dS =
∫∫

S
x2 + y2 dxdy =

∫ 2π

0

∫ 3

0
r2 · r drdθ

which evaluates to 81π/2. □

Example 9.8 (MA2104 AY24/25 Sem 2 Tutorial 10). Let n be the outer unit normal vector of the surface S
given by the equation 4x2+9y2+36z2 = 26, where z≥ 0, and let F(x,y,z)= yi+x2j+

(
x2 + y4

)3/2 sin
(
e
√

xyz
)

k.
Find the value of ∫∫

S
curlF ·dS.

Solution. At the base of the spheroid, we have z = 0, so 4x2 +9y2 = 26. We can parametrise this ellipse using
x =

√
26
2 cosθ and y =

√
26
3 sinθ . Hence,

r(θ) =

〈√
26
2

cosθ ,

√
26
3

sinθ ,0

〉
,

which implies

r′ (θ) =

〈
−
√

26
2

sinθ ,

√
26
3

cosθ ,0

〉
and F(r(θ)) =

〈√
26
3

sinθ ,
26
4

cos2
θ ,0

〉
.

As such, ∫∫
S

curlF ·dS =
∫

C
F ·dr by Stokes’ Theorem

=
∫ 2π

0
F(r(θ)) r′ (θ) dθ

=
∫ 2π

0
−26

6
sin2

θ +
26

√
26

12
cos3

θ dθ

which evaluates to −13π/3. □

Example 9.9 (MA2104 AY24/25 Sem 2 Tutorial 10). Let C be a simple closed smooth curve in the plane
2x+2y+ z = 2. Show that ∫

C
2y dx+3z dy− x dz

depends only on the area of the region enclosed by C and not on the position or shape of C.
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Solution. Let F = ⟨2y,3z,−x⟩. Then, curlF = ⟨−3,1,3⟩. Since C is on the plane 2x+ 2y+ z = 2, the surface
enclosed by C is on the plane and has normal vector n = ⟨2,2,1⟩. Hence,

dS =
1
3
⟨2,2,1⟩ dS.

By Stokes’ theorem,

∫
C

2x dx+3z dy− x dz =
∫∫

S
curlF ·dS =

∫∫
S

curlF ·n dS =
∫∫

S

−3
1
3

 · 1
3

2
2
1

 dS =−1
3
·A(S) ,

where A(S) denotes the area of S. So, the aforementioned integral does not depend on the position or the shape
of C. □

Theorem 9.3 (divergence theorem). Let E be a solid region where the boundary surface S of E is
piecewise smooth with positive orientation. Let F(x,y,z) be a vector field whose component functions
have continuous partial derivatives on an open region that contains E. Then,∫∫

S
F ·dS =

∫∫∫
E

div F dV .

Example 9.10 (MA2104 AY24/25 Sem 2 Tutorial 11). Use the divergence theorem to calculate the surface
integral ∫∫

S
F ·dS,

where F(x,y,z) = x3i+ y3j+ z3k and S is the surface of the solid bounded by the cylinder x2 + y2 = 1 and the
planes z = 0 and z = 2.

Solution. By the divergence theorem, ∫∫
S

F ·dS =
∫∫∫

E
divF dV.

By using cylindrical coordinates, the integral becomes∫ 2π

0

∫ 1

0

∫ 2

0

(
3r2 +3z2) · r dzdrdθ

which evaluates to 11π . □

Example 9.11 (MA2104 AY24/25 Sem 2 Tutorial 11). Use the divergence theorem to find the outward flux
of F across the boundary of the region D, where F(x,y,z) = yi+ xyj− zk and D is the region inside the solid
cylinder x2 + y2 ≤ 4, between the plane z = 0 and the paraboloid z = x2 + y2.

Solution. We have divF = x− 1. By cylindrical coordinates, we can let x = r cosθ , y = r sinθ and z = z, so
0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π , and 0 ≤ z ≤ r2. Using the divergence theorem,

∫∫
S

F ·dS =
∫∫∫

D
divF dV =

∫ 2π

0

∫ 2

0

∫ r2

0
(r cosθ −1) · r dzdrdθ

which evaluates to −8π . □
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Example 9.12 (MA2104 AY24/25 Sem 2 Tutorial 11). Let

S1 =

{
(x,y,z) : z =

√
x2 + y2,0 ≤ z ≤ 1

2

}
be the cone with downward direction and

S2 =

{
(x,y,z) : x2 + y2 +

(
z− 1

2

)2

=
1
4
,
1
2
≤ z ≤ 1

}
be the hemisphere with upward orientation

Let S = S1 + S2 be the closed surface with outward orientation. Let F be the vector field on R3 given by
F(x,y,z) = xi+ yj+ zk.

(i) Evaluate ∫∫
S1

F ·dS.

(ii) Using the divergence theorem, or otherwise, show that∫∫
S2

F ·dS =
3π

8
.

Solution.
(i) Using cylindrical coordinates, we have x = r cosθ , y = r sinθ and z = r. As such, F(r,θ) =

⟨r cosθ ,r sinθ ,r⟩. Taking partial derivatives yield Fr = ⟨cosθ ,sinθ ,1⟩ and Fθ = ⟨−r sinθ ,r cosθ ,0⟩.
So, Fr ×Fθ = ⟨−r cosθ ,−r sinθ ,r⟩. Since S1 is a cone with downward orientation, we have

dS = ⟨r cosθ ,r sinθ ,−r⟩ .

So,

F ·dS = ⟨r cosθ ,r sinθ ,r⟩ · ⟨r cosθ ,r sinθ ,−r⟩= 0.

To conclude, ∫∫
S1

F ·dS =
∫∫

S1

0 dS = 0.

(ii) We have divF = 3. Since

S = S1 +S2 and
∫∫

S1

F ·dS = 0 from (i) then
∫∫

S2

F ·dS =
∫∫

S
F ·dS.

Note that by the divergence theorem,∫∫
S

F ·dS =
∫∫∫

E
divF dV = 3 ·Vol(S) .

Here, Vol(S) denotes the volume of the region enclosed by the cone and the hemisphere†. The cone has
base radius 1/2 (since the base satisfies the equation x2 + y2 = 1/4) and height 1/2 so its volume is

1
3

π ·
(

1
2

)2

· 1
2
=

π

24
.

The hemisphere is of radius 1/2, so its volume is

2
3

π

(
1
2

)3

=
π

12
.

So, the answer is

3 ·Vol(S) = 3
(

π

24
+

π

12

)
=

3π

8
.

†One can use techniques taught in O-Level Mathematics to deduce the volume of the cone and the hemisphere given their respective
measurements.
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